
MO SEo
a guide to the

new   revolution

1Friday, August 9, 13



2Friday, August 9, 13



Moose
http://rjbs.manxome.org/talks/moose/

3Friday, August 9, 13



Any 
Questions?

4Friday, August 9, 13

(questions about demographics of the audience)
who is using Moose? who knows they want to?  who is using what Perl?
IS ANYBODY HERE RED/GREEN COLORBLIND?



???? Moose ????

5Friday, August 9, 13



• Moose is the new black

•

???? Moose ????

5Friday, August 9, 13



???? Moose ????

• Moose is the new black

6Friday, August 9, 13

None of this answers the real question:



• Moose is the new black

???? Moose ????

• Moose is the new black

6Friday, August 9, 13

None of this answers the real question:



• Moose is the new black

• Moose is at the heart of the new revolution

???? Moose ????

• Moose is the new black

6Friday, August 9, 13

None of this answers the real question:



• Moose is the new black

• Moose is at the heart of the new revolution

• Moose is a game-changing tool

???? Moose ????

• Moose is the new black

6Friday, August 9, 13

None of this answers the real question:



7Friday, August 9, 13

...what is Moose?



M o o s e

8Friday, August 9, 13

1: who knows what traits are?  when I started giving this talk, it was close to nobody



• Moose is a toolkit for writing classes

M o o s e

8Friday, August 9, 13

1: who knows what traits are?  when I started giving this talk, it was close to nobody



• Moose is a toolkit for writing classes

• with some mixin-like features¹

M o o s e

8Friday, August 9, 13

1: who knows what traits are?  when I started giving this talk, it was close to nobody



• Moose is a toolkit for writing classes

• with some mixin-like features¹

• and a bunch of parameter validation tools

M o o s e

8Friday, August 9, 13

1: who knows what traits are?  when I started giving this talk, it was close to nobody



? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

9Friday, August 9, 13

What's so special about that?  We have 90,000 of those already!



Perl 5's Object System

10Friday, August 9, 13



Perl 5's Object System

• bare bones - a toolkit

10Friday, August 9, 13



Perl 5's Object System

• bare bones - a toolkit

• very few assumptions

10Friday, August 9, 13



Perl 5's Object System

• bare bones - a toolkit

• very few assumptions

• allows many different strategies

10Friday, August 9, 13



Perl 5's Object System

• bare bones - a toolkit

• very few assumptions

• allows many different strategies

• this isn't always a feature

10Friday, August 9, 13



There's more than 
one way to do it!

11Friday, August 9, 13

For example, let's talk about object systems -- since that's what we're here to talk about.  
Almost everybody provides a nice simple way to define classes.



There's more than 
one way to do it!

...but sometimes consistency is not a bad thing either

11Friday, August 9, 13

For example, let's talk about object systems -- since that's what we're here to talk about.  
Almost everybody provides a nice simple way to define classes.



class Employee
  attr_accessor :name
  attr_accessor :title
end

12Friday, August 9, 13

Ruby



(defclass Employee ()
  ((Name  :accessor Name  :initarg :Name)
   (Title :accessor Title :initarg :Title)))

13Friday, August 9, 13

Lisp



class Employee {
  public var $name;
  public var $title;
}

14Friday, August 9, 13

PHP (!)



class Employee {
  has Str $.name;
  has Str $.title;
}

15Friday, August 9, 13

Perl 6



package Employee;
@ATTR = qw(name title);

sub new {
  my ($class, %arg) = @_;
  bless { map{; $_, $arg{$_} } @ATTR }, $class;
}

for my $attr (@ATTR) {
  no strict;
  *$attr = sub {
    my $self = shift;
    $self->{ $attr } = shift if @_;
    return $self->{ $attr };
  };
}

16Friday, August 9, 13

Perl 5.  Ugh.

So, Stevan Little was doing some design work on Perl 6, so he kept seeing this...



class Employee {
  has Str $.name;
  has Str $.title;
}

17Friday, August 9, 13

and all the associated nice, simple straightforward stuff, and then he'd to back to work and 
see...



package Employee;

sub new { bless {} }

for my $attr (qw(name title)) {
  no strict;
  *$attr = sub {
    my $self = shift;
    $self->{ $attr } = shift if @_;
    return $self->{ $attr };
  };
}

18Friday, August 9, 13

...this again.  So, more or less, he took a bunch of the stuff cooked up by the wizards working 
on Perl 6 and translated it into Perl 5, giving us Moose, where we can write this...



package Employee;
use Moose;

has name  => (is => 'ro');
has title => (is => 'rw');

19Friday, August 9, 13

Isn't that nice?

So, before we get into how Moose works, let's have a quick review of the extreme basics of 
OO in Perl... but first:



20Friday, August 9, 13

That's a pretty nice savings.  Also, notice the typo in the right-hand side?  No.  Of course you 
didn't!

Now, how many people here have played Dungeons and Dragons?



21Friday, August 9, 13

That's a pretty nice savings.  Also, notice the typo in the right-hand side?  No.  Of course you 
didn't!

Now, how many people here have played Dungeons and Dragons?
Who still plays?  See me later!



Dungeons
&

Dragons
&

Moose

22Friday, August 9, 13



Jeffs Gameblog
http://www.jrients.blogspot.com/

23Friday, August 9, 13

This is one of my favorite gaming blogs.  If you want to know how awesome it is, here is an 
image that once appeared on every page:  (ig-88)  who knows this robot??

Jeff wrote a really good article about spells and spell levels.



Jeffs Gameblog
http://www.jrients.blogspot.com/

23Friday, August 9, 13

This is one of my favorite gaming blogs.  If you want to know how awesome it is, here is an 
image that once appeared on every page:  (ig-88)  who knows this robot??

Jeff wrote a really good article about spells and spell levels.



Two Third Level Spells

24Friday, August 9, 13

obviously FB is more powerful!  so why is it third level?  

Jeff wondered the same thing...



Two Third Level Spells

• Fireball

• automatic hit, big damage, stuff explodes

24Friday, August 9, 13

obviously FB is more powerful!  so why is it third level?  

Jeff wondered the same thing...



Two Third Level Spells

• Fireball

• automatic hit, big damage, stuff explodes

• Flame Arrow

• roll to hit, minor damage, BYOB*

24Friday, August 9, 13

obviously FB is more powerful!  so why is it third level?  

Jeff wondered the same thing...



Two Third Level Spells

• Fireball

• automatic hit, big damage, stuff explodes

• Flame Arrow

• roll to hit, minor damage, BYOB*

* bring your own bow
24Friday, August 9, 13

obviously FB is more powerful!  so why is it third level?  

Jeff wondered the same thing...



What do spell levels measure?

25Friday, August 9, 13

power output doesn't work; energy input is just hand waving, no better than the science of Star Trek;

he says it's because the formula -- the stuff you need to memorize -- is of comparable complexity

why?  because centuries of wizardly research has been done in the field of Fireball and now we know a 
simple way to cast it;  someday maybe we'll end up with a 1st level fireball -- presumably lots of wizardly 
researchers are working on that right now — or a first level Wish!  there's a campaign idea right there!  
(thank me later)



• power output?

What do spell levels measure?

25Friday, August 9, 13

power output doesn't work; energy input is just hand waving, no better than the science of Star Trek;

he says it's because the formula -- the stuff you need to memorize -- is of comparable complexity

why?  because centuries of wizardly research has been done in the field of Fireball and now we know a 
simple way to cast it;  someday maybe we'll end up with a 1st level fireball -- presumably lots of wizardly 
researchers are working on that right now — or a first level Wish!  there's a campaign idea right there!  
(thank me later)



• power output?

• energy input?

What do spell levels measure?

25Friday, August 9, 13

power output doesn't work; energy input is just hand waving, no better than the science of Star Trek;

he says it's because the formula -- the stuff you need to memorize -- is of comparable complexity

why?  because centuries of wizardly research has been done in the field of Fireball and now we know a 
simple way to cast it;  someday maybe we'll end up with a 1st level fireball -- presumably lots of wizardly 
researchers are working on that right now — or a first level Wish!  there's a campaign idea right there!  
(thank me later)



• power output?

• energy input?

• formulaic complexity!

What do spell levels measure?

25Friday, August 9, 13

power output doesn't work; energy input is just hand waving, no better than the science of Star Trek;

he says it's because the formula -- the stuff you need to memorize -- is of comparable complexity

why?  because centuries of wizardly research has been done in the field of Fireball and now we know a 
simple way to cast it;  someday maybe we'll end up with a 1st level fireball -- presumably lots of wizardly 
researchers are working on that right now — or a first level Wish!  there's a campaign idea right there!  
(thank me later)



Level One
Fireball

Moose

=

26Friday, August 9, 13

Moose gets us a huge number of powerful effects that are just devastating to a lot of menial, 
boring problems, and the effects are incredibly simple to bring about.



Level One
Fireball

Moose

=

Of
Object Orientation

26Friday, August 9, 13

Moose gets us a huge number of powerful effects that are just devastating to a lot of menial, 
boring problems, and the effects are incredibly simple to bring about.



Problems with L-1 Fireball

27Friday, August 9, 13



Problems with L-1 Fireball

• now all the first level wizards have fireball

27Friday, August 9, 13



Problems with L-1 Fireball

• now all the first level wizards have fireball

• but they still think of it as level 3 spell!

27Friday, August 9, 13



Problems with L-1 Fireball

• now all the first level wizards have fireball

• but they still think of it as level 3 spell!

• they think it's more complex than it is

27Friday, August 9, 13



Problems with L-1 Fireball

• now all the first level wizards have fireball

• but they still think of it as level 3 spell!

• they think it's more complex than it is

• so they start to think it's magic

27Friday, August 9, 13



Will 
the Fireball 
set metal on 

fire?

28Friday, August 9, 13

No!  It's just fire!



Will the 
Fireball hurt my 

friends, too?

29Friday, August 9, 13

What?  Of course!  It's a huge ball of fire!



How will 
Fireball interact 
with the Charm 

spell?

30Friday, August 9, 13

What the hell does that even mean?



It's just a Fireball spell!
 

31Friday, August 9, 13



It's just a Fireball spell!
It's not magic!

32Friday, August 9, 13

(errrr ... you know what I mean!)



33Friday, August 9, 13

Well, Perl programmers come upon this really big weird thing, and what do they think?  This 
isn't Perl!  This is some other crazy thing.



Ceci n'est pas un chameau
33Friday, August 9, 13

Well, Perl programmers come upon this really big weird thing, and what do they think?  This 
isn't Perl!  This is some other crazy thing.



How will 
Moose interact 

with arrays?

34Friday, August 9, 13

What?  It's just Perl code.  What?



Does Moose 
support 

localization?

35Friday, August 9, 13

Localization of what?  It's just a class building toolkit!



Can I use 
Moose to write 

SQL?

36Friday, August 9, 13

I... guess?



It's just a Perl library!
It's not magic!

37Friday, August 9, 13

Whether or not this is a contradition is left to your judgement.



Ceci n'est pas un chameau
38Friday, August 9, 13

So, no matter what sense of weirdness and wonder you might feel at first, just remember 
that...



39Friday, August 9, 13

Moose is just Perl code.



39Friday, August 9, 13

Moose is just Perl code.



=

39Friday, August 9, 13

Moose is just Perl code.



=

39Friday, August 9, 13

Moose is just Perl code.



=

Moose is Perl
39Friday, August 9, 13

Moose is just Perl code.



Demystifying Moose

40Friday, August 9, 13

archwizards -- you know, the guys writing Smalltalk and Lisp

The absolute most important thing I am going to tell you all afternoon is: 
software is not magic, ever.  It's always just software.



Demystifying Moose

• you'll see a lot of magic-looking features

40Friday, August 9, 13

archwizards -- you know, the guys writing Smalltalk and Lisp

The absolute most important thing I am going to tell you all afternoon is: 
software is not magic, ever.  It's always just software.



Demystifying Moose

• you'll see a lot of magic-looking features

• only archwizards used to get to use them

40Friday, August 9, 13

archwizards -- you know, the guys writing Smalltalk and Lisp

The absolute most important thing I am going to tell you all afternoon is: 
software is not magic, ever.  It's always just software.



Demystifying Moose

• you'll see a lot of magic-looking features

• only archwizards used to get to use them

• but now anybody can

40Friday, August 9, 13

archwizards -- you know, the guys writing Smalltalk and Lisp

The absolute most important thing I am going to tell you all afternoon is: 
software is not magic, ever.  It's always just software.



Demystifying Moose

• you'll see a lot of magic-looking features

• only archwizards used to get to use them

• but now anybody can

• and they are not magic

40Friday, August 9, 13

archwizards -- you know, the guys writing Smalltalk and Lisp

The absolute most important thing I am going to tell you all afternoon is: 
software is not magic, ever.  It's always just software.



Object-Orientation

41Friday, August 9, 13



Object-Orientation 
Fundamentals

42Friday, August 9, 13

Yeah, I left out identity.  So sue me.

People make lots of different lists like this.  This isn't necessarily the best one, but it's the 
one that lets me explain Moose pretty well.



Object-Orientation 
Fundamentals

• state

42Friday, August 9, 13

Yeah, I left out identity.  So sue me.

People make lots of different lists like this.  This isn't necessarily the best one, but it's the 
one that lets me explain Moose pretty well.



Object-Orientation 
Fundamentals

• state

• behavior

42Friday, August 9, 13

Yeah, I left out identity.  So sue me.

People make lots of different lists like this.  This isn't necessarily the best one, but it's the 
one that lets me explain Moose pretty well.



Object-Orientation 
Fundamentals

• state

• behavior

• code reuse

42Friday, August 9, 13

Yeah, I left out identity.  So sue me.

People make lots of different lists like this.  This isn't necessarily the best one, but it's the 
one that lets me explain Moose pretty well.



package Employee;

use strict;
use warnings;

sub name_and_title {
  my ($self) = @_;

  my $name  = $self->name;
  my $title = $self->title;

  return "$name, $title";
}

1;
43Friday, August 9, 13

before I start talking about the code here, let me mention a couple of uninteresting hunks of 
code here



package Employee;

use strict;
use warnings;

sub name_and_title {
  my ($self) = @_;

  my $name  = $self->name;
  my $title = $self->title;

  return "$name, $title";
}

1;
44Friday, August 9, 13

These "use strict" and "use warnings" and "magic true value" are not interesting.  I will almost 
never show them again, and you should assume that they're there unless I specifically bring it 
up.



package Employee;

sub name_and_title {
  my ($self) = @_;

  my $name  = $self->name;
  my $title = $self->title;

  return "$name, $title";
}

Behavior (Methods)

45Friday, August 9, 13

behavior!  it's a method



package Employee;

sub title {
  my $self = shift;

  $self->{title} = shift if @_;

  return $self->{title}
}

State (Attributes)

46Friday, August 9, 13

we've seen this pattern a bunch of times.

what about a read-only attr?



package Employee;

sub name {
  my $self = shift;

  return $self->{name}
}

State (Attributes)

47Friday, August 9, 13

how do we get that name on a new object?



package Employee;

sub new {
  my ($class, $arg) = @_;
  
  my $self = {
    name  => $arg->{name},
    title => $arg->{title},
  };

  bless $self => $class;

  return $self;
}

48Friday, August 9, 13

so, we need some constructor thing



package Employee::Former;
our @ISA = qw(Employee);

sub name_and_title {
  my ($self) = @_;

  my $old = $self->SUPER::name_and_title;

  return "$old (Former)";
}

Re-use (Subclassing)

49Friday, August 9, 13

re-use!  we got all the state and behavior provided by Employee, but with overridden 
behavior for this one method



Once Again, with Moose

50Friday, August 9, 13



package Employee;
use Moose;

has name  => (is => 'ro');
has title => (is => 'rw');

sub name_and_title {
  my ($self) = @_;

  my $name  = $self->name;
  my $title = $self->title;

  return "$name, $title";
}

no Moose;
51Friday, August 9, 13



package Employee;
use Moose;

has name  => (is => 'ro');
has title => (is => 'rw');

sub name_and_title {
  my ($self) = @_;

  my $name  = $self->name;
  my $title = $self->title;

  return "$name, $title";
}

no Moose;
52Friday, August 9, 13

This says, "Hey, I'm writing a Moose-based class now."



package Employee;
use Moose;

has name  => (is => 'ro');
has title => (is => 'rw');

sub name_and_title {
  my ($self) = @_;

  my $name  = $self->name;
  my $title = $self->title;

  return "$name, $title";
}

no Moose;
53Friday, August 9, 13

So, we define two attributes.  What does that mean?



use Employee;

my $peon = Employee->new({
  name  => 'William Toady',
  title => 'Associate Assistant',
});

54Friday, August 9, 13

First, we get "new" for free.



use Employee;

my $peon = Employee->new({
  name  => 'William Toady',
  title => 'Associate Assistant',
});

$peon->title("Assistant to the Associate");

55Friday, August 9, 13

and we get accessors for our attributes.  title is read/write so we can update the object



use Employee;

my $peon = Employee->new({
  name  => 'William Toady',
  title => 'Associate Assistant',
});

$peon->title("Assistant to the Associate");

$peon->name("William Riker");

56Friday, August 9, 13

but name isn't, so when we try this...



use Employee;

my $peon = Employee->new({
  name  => 'William Toady',
  title => 'Associate Assistant',
});

$peon->title("Assistant to the Associate");

$peon->name("William Riker");

57Friday, August 9, 13

it dies



package Employee;
use Moose;

has name  => (is => 'ro');
has title => (is => 'rw');

sub name_and_title {
  my ($self) = @_;

  my $name  = $self->name;
  my $title = $self->title;

  return "$name, $title";
}

no Moose;
58Friday, August 9, 13

Methods look the same.



package Employee;
use Moose;

has name  => (is => 'ro');
has title => (is => 'rw');

sub name_and_title {
  my ($self) = @_;

  my $name  = $self->name;
  my $title = $self->title;

  return "$name, $title";
}

no Moose;
59Friday, August 9, 13

This makes sure that helper functions like "has" aren't left around to be accidentally called as 
methods later.  I'll often skip "no Moose" usually, too.  If I show you something and say it's a 
class, you can probably assume that "no Moose" can be assumed along with the magic true 
value.
I don't usually write "no Moose" in my code, anyway.  I use a different tool to clean up all 
those functions...



package Employee;
use Moose;

has name  => (is => 'ro');
has title => (is => 'rw');

sub name_and_title {
  my ($self) = @_;

  my $name  = $self->name;
  my $title = $self->title;

  return "$name, $title";
}

no Moose;

my $employee = Employee->new(...);

$employee->has(...);

59Friday, August 9, 13

This makes sure that helper functions like "has" aren't left around to be accidentally called as 
methods later.  I'll often skip "no Moose" usually, too.  If I show you something and say it's a 
class, you can probably assume that "no Moose" can be assumed along with the magic true 
value.
I don't usually write "no Moose" in my code, anyway.  I use a different tool to clean up all 
those functions...



package Employee;
use Moose;

use namespace::autoclean;

has name  => (is => 'ro');
has title => (is => 'rw');

sub name_and_title {
  my ($self) = @_;

  my $name  = $self->name;
  my $title = $self->title;

  return "$name, $title";
}

60Friday, August 9, 13

namespace::autoclean waits until all my code is done compiling, then removes all the 
routines that got added by everything else.  This cleans up Moose's imports as well as other 
helpers that I've brought in.  We'll see why this is so useful later.

Anyway, I won't be putting *this* on every slide, either.



package Employee::Former;
use Moose;
extends 'Employee';

sub name_and_title {
  my ($self) = @_;

  my $old = $self->SUPER::name_and_title;

  return "$old (Former)";
}

61Friday, August 9, 13

We're makin' a subclass now!



package Employee::Former;
use Moose;
extends 'Employee';

sub name_and_title {
  my ($self) = @_;

  my $old = $self->SUPER::name_and_title;

  return "$old (Former)";
}

62Friday, August 9, 13



package Employee::Former;
use Moose;
extends 'Employee';

sub name_and_title {
  my ($self) = @_;

  my $old = $self->SUPER::name_and_title;

  return "$old (Former)";
}

63Friday, August 9, 13

and then just the method that calls super -- but I wouldn't really suggest writing this; 
instead, I would write this...



package Employee::Former;
use Moose;
extends 'Employee';

override name_and_title => sub {
  my ($self) = @_;

  my $old = super;

  return "$old (Former)";
};

64Friday, August 9, 13



package Employee::Former;
use Moose;
extends 'Employee';

override name_and_title => sub {
  my ($self) = @_;

  my $old = super;

  return "$old (Former)";
};

65Friday, August 9, 13

Among other things, by doing this, Moose will throw if our superclass has no 
"name_and_title" method to be overridden, alerting us to stupid mistakes at compile time.



package Employee::Former;
use Moose;
extends 'Employee';

override name_and_title => sub {
  my ($self) = @_;

  my $old = super;

  return "$old (Former)";
};

66Friday, August 9, 13

This is prettier than ->SUPER::, but it also helps avoid various weird and annoying bugs.   If 
you've never been bitten by those sorts of bugs, you are lucky!



package Employee::Former;
use Moose;
extends 'Employee';

override name_and_title => sub {
  my ($self) = @_;

  my $old = super;

  return "$old (Former)";
};

67Friday, August 9, 13

Since we're not making a named sub, we're just calling a function.  We need to terminate our 
statement.  Forgetting that semicolon is a common mistake.  I make it daily.



package Employee::Former;
use Moose;
extends 'Employee';

override name_and_title => sub {
  my ($self) = @_;

  my $old = super;

  return "$old (Former)";
};

67Friday, August 9, 13

Since we're not making a named sub, we're just calling a function.  We need to terminate our 
statement.  Forgetting that semicolon is a common mistake.  I make it daily.



package Employee;
use Moose;

has name  => (is => 'ro');
has title => (is => 'rw');

sub name_and_title {
  my ($self) = @_;

  my $name  = $self->name;
  my $title = $self->title;

  return "$name, $title";
}

68Friday, August 9, 13

Okay.  Let's talk about what these guys are all about…



has name  => (is => 'ro');

has title => (is => 'rw');

69Friday, August 9, 13

"has" is a routine that adds an attribute -- a slot for state -- to our class.  we pass it a name 
(like name or title) and then a hash of options describing the attribute; here, we're only 
providing one option: whether it "is" read-only or read-write

"has" doesn't just set up state -- it's also setting up behavior, in the method we use to get at 
the data.  in our super-vanilla implementation, we wrote this:



sub title {
  my $self = shift;

  $self->{title} = shift if @_;

  return $self->{title}
}

sub name {
  my $self = shift;

  return $self->{name}
}

70Friday, August 9, 13

This is what we'd shown as read-write and read-only accessors in stock Perl.  The version we 
get from Moose is even better, because it will notice when you try to set a read-only value 
like name and will throw an exception.  You could do that in plain ol' Perl, too… if you 
remember… every time.



has name  => (is => 'ro');

has title => (is => 'rw');

71Friday, August 9, 13

So, we get some pretty nice behavior from just that, and if we want different behavior, we can 
get it.

What we said here is the same as this...



has name  => (
  reader   => 'name',
);

has title => (
  accessor => 'title',
);

72Friday, August 9, 13

"accessor" means that "get or set based on whether I gave you an argument" style that we use 
all the time in Perl

if we wanted something more like Java with get_/set_ we could do this...



has name  => (
  reader   => 'get_name',
);

has title => (
  reader   => 'get_title',
  writer   => 'set_title',
);

73Friday, August 9, 13

What happens is that you still get the same old attributes created, but the methods that relate 
to them are different.  In other words, we're changing the behavior associated with the 
attributes.

Moose has lots of ways to let you build behavior based on attributes, and we're going to see 
more and more of that as we go on.



has name  => (
  is       => 'ro',
);

has title => (
  is       => 'rw',
);

74Friday, August 9, 13

but next I want to talk about one more simple way we can describe the potential states of our 
objects: type constraints



has name  => (
  is       => 'ro',
  isa      => 'Str',
);

has title => (
  is       => 'rw',
  isa      => 'Str',
);

75Friday, August 9, 13

Moose has a type constraint system that lets us define datatypes and constrain attribute 
values to them.  This is extremely useful...



use Employee;

my $peon = Employee->new({
  name  => 'William Toady',
  title => 'Associate Assistant',
});

76Friday, August 9, 13

...say you meant to do this, but you forgot how name works, and thought it was an arrayref 
of first/last name, like you use somewhere else in the code.  So you do this:



use Employee;

my $peon = Employee->new({
  name  => [ 'William',  'Toady' ],
  title => 'Associate Assistant',
});

77Friday, August 9, 13

Well, now we know that this is illegal, because we said that name "isa" String.  So, as soon as 
we try to create this object, we get this nice, helpful error message:



Attribute (name) does not pass the type constraint because: Validation failed for 
'Str' with value ARRAY(0x100826a00) at /Users/rjbs/perl5/perlbrew/perls/
perl-5.12.1/lib/site_perl/5.12.1/darwin-2level/Moose/Meta/Attribute.pm line 746
	
Moose::Meta::Attribute::_coerce_and_verify('Moose::Meta::Attribute=HASH(0x100ac41
48)', 'ARRAY(0x100826a00)', 'Employee=HASH(0x100827270)') called at /Users/rjbs/
perl5/perlbrew/perls/perl-5.12.1/lib/site_perl/5.12.1/darwin-2level/Moose/Meta/
Attribute.pm line 398
	
Moose::Meta::Attribute::initialize_instance_slot('Moose::Meta::Attribute=HASH(0x1
00ac4148)', 'Moose::Meta::Instance=HASH(0x100ac3bf0)', 
'Employee=HASH(0x100827270)', 'HASH(0x100826a18)') called at /Users/rjbs/perl5/
perlbrew/perls/perl-5.12.1/lib/site_perl/5.12.1/darwin-2level/Class/MOP/Class.pm 
line 567
	
Class::MOP::Class::_construct_instance('Moose::Meta::Class=HASH(0x100a81538)', 
'HASH(0x100826a18)') called at /Users/rjbs/perl5/perlbrew/perls/perl-5.12.1/lib/
site_perl/5.12.1/darwin-2level/Class/MOP/Class.pm line 540
	 Class::MOP::Class::new_object('Moose::Meta::Class=HASH(0x100a81538)', 
'HASH(0x100826a18)') called at /Users/rjbs/perl5/perlbrew/perls/perl-5.12.1/lib/
site_perl/5.12.1/darwin-2level/Moose/Meta/Class.pm line 256
	 Moose::Meta::Class::new_object('Moose::Meta::Class=HASH(0x100a81538)', 
'HASH(0x100826a18)') called at /Users/rjbs/perl5/perlbrew/perls/perl-5.12.1/lib/
site_perl/5.12.1/darwin-2level/Moose/Object.pm line 25
	 Moose::Object::new('Employee', 'name', 'ARRAY(0x100826a00)') called at 
program.pl line 10

78Friday, August 9, 13

holy crap!  it's a gigantic stack trace!  get used to it...

Moose throws these at the slightest provocation.  You will hate them at first and learn to love 
them later.  Probably.



Attribute (name) does not pass the type constraint because: Validation failed for 
'Str' with value ARRAY(0x100826a00) at /Users/rjbs/perl5/perlbrew/perls/
perl-5.12.1/lib/site_perl/5.12.1/darwin-2level/Moose/Meta/Attribute.pm line 746
	
Moose::Meta::Attribute::_coerce_and_verify('Moose::Meta::Attribute=HASH(0x100ac41
48)', 'ARRAY(0x100826a00)', 'Employee=HASH(0x100827270)') called at /Users/rjbs/
perl5/perlbrew/perls/perl-5.12.1/lib/site_perl/5.12.1/darwin-2level/Moose/Meta/
Attribute.pm line 398
	
Moose::Meta::Attribute::initialize_instance_slot('Moose::Meta::Attribute=HASH(0x1
00ac4148)', 'Moose::Meta::Instance=HASH(0x100ac3bf0)', 
'Employee=HASH(0x100827270)', 'HASH(0x100826a18)') called at /Users/rjbs/perl5/
perlbrew/perls/perl-5.12.1/lib/site_perl/5.12.1/darwin-2level/Class/MOP/Class.pm 
line 567
	
Class::MOP::Class::_construct_instance('Moose::Meta::Class=HASH(0x100a81538)', 
'HASH(0x100826a18)') called at /Users/rjbs/perl5/perlbrew/perls/perl-5.12.1/lib/
site_perl/5.12.1/darwin-2level/Class/MOP/Class.pm line 540
	 Class::MOP::Class::new_object('Moose::Meta::Class=HASH(0x100a81538)', 
'HASH(0x100826a18)') called at /Users/rjbs/perl5/perlbrew/perls/perl-5.12.1/lib/
site_perl/5.12.1/darwin-2level/Moose/Meta/Class.pm line 256
	 Moose::Meta::Class::new_object('Moose::Meta::Class=HASH(0x100a81538)', 
'HASH(0x100826a18)') called at /Users/rjbs/perl5/perlbrew/perls/perl-5.12.1/lib/
site_perl/5.12.1/darwin-2level/Moose/Object.pm line 25
	 Moose::Object::new('Employee', 'name', 'ARRAY(0x100826a00)') called at 
program.pl line 10

79Friday, August 9, 13



Attribute (name) does not pass the type 
constraint because: Validation failed for 
'Str' with value ARRAY(0x100826a00) at

...

Moose::Object::new('Employee', 'name', 
'ARRAY(0x100826a00)') called at program.pl 
line 10

80Friday, August 9, 13



has name  => (
  is       => 'ro',
  isa      => 'Str',
);

has title => (
  is       => 'rw',
  isa      => 'Str',
);

81Friday, August 9, 13

Let's look at one more thing we can do with attributes.



has name  => (
  is       => 'ro',
  isa      => 'Str',
  required => 1,
);

has title => (
  is       => 'rw',
  isa      => 'Str',
  required => 1,
);

82Friday, August 9, 13

now, if you try to create an employee without a title, it will fail.



use Employee;

my $peon = Employee->new({
  name  => 'William Toady',
});

83Friday, August 9, 13



use Employee;

my $peon = Employee->new({
  name  => 'William Toady',
});

84Friday, August 9, 13

this is key to really validating state, and it also lets us show off one last thing.
just as we could override method definitions in a subclass, so can we override attribute 
definitions



package Employee::Former;
use Moose;
extends 'Employee';

override name_and_title => sub { ... };

has '+title' => (
  default => 'Team Member',
);

85Friday, August 9, 13

The + says "we're overriding the definition in our superclass.  Everything stays the same 
except for the provided changes."

Here, we give a default.  If no value is given, the default is used, which lets us satisfy the 
"required" even when no value was given in the call to the constructor.



use Employee::Former;

my $ex_peon = Employee::Former->new({
  name  => 'William Toady',
});

86Friday, August 9, 13



use Employee::Former;

my $ex_peon = Employee::Former->new({
  name  => 'William Toady',
});

$ex_peon->name_and_title;
# ===> William Toady, Team Member (former)

87Friday, August 9, 13



checkpoint: attributes

88Friday, August 9, 13



checkpoint: attributes

• is "ro" and is "rw"

88Friday, August 9, 13



checkpoint: attributes

• is "ro" and is "rw"

• accessor, reader, writer

88Friday, August 9, 13



checkpoint: attributes

• is "ro" and is "rw"

• accessor, reader, writer

• isa

88Friday, August 9, 13



checkpoint: attributes

• is "ro" and is "rw"

• accessor, reader, writer

• isa

• required

88Friday, August 9, 13



checkpoint: classes and 
subclasses

89Friday, August 9, 13



checkpoint: classes and 
subclasses

• use Moose, no Moose

• extends

• override

• has +attr

89Friday, August 9, 13



Set & Unset

90Friday, August 9, 13



has name  => (
  is       => 'ro',
  isa      => 'Str',
  required => 1,
);

has title => (
  is       => 'rw',
  isa      => 'Str',
  required => 1,
);

91Friday, August 9, 13

"required" means that it must have a value, which brings us to one of the most confusing 
topics for beginning Moose users: unset and undefined

to illustrate it, let's imagine a new very simple class



package Network::Socket;
use Moose;

has port => (
  is       => 'ro',
  required => 1,
);

92Friday, August 9, 13

Remember, in all these slides it isn't "green behaves like we want and red misbehaves" -- it's 
"red code dies and green code lives."  Here, we long for death.  The green code is bad 
behavior.

"required" doesn't mean "requires a defined value" but "requires any ol' value" think about 
hashes, here…



package Network::Socket;
use Moose;

has port => (
  is       => 'ro',
  required => 1,
);

my $socket = Network::Socket->new;

92Friday, August 9, 13

Remember, in all these slides it isn't "green behaves like we want and red misbehaves" -- it's 
"red code dies and green code lives."  Here, we long for death.  The green code is bad 
behavior.

"required" doesn't mean "requires a defined value" but "requires any ol' value" think about 
hashes, here…



package Network::Socket;
use Moose;

has port => (
  is       => 'ro',
  required => 1,
);

my $socket = Network::Socket->new;

my $socket = Network::Socket->new(port => undef);

92Friday, August 9, 13

Remember, in all these slides it isn't "green behaves like we want and red misbehaves" -- it's 
"red code dies and green code lives."  Here, we long for death.  The green code is bad 
behavior.

"required" doesn't mean "requires a defined value" but "requires any ol' value" think about 
hashes, here…



my %hash = (
  foo => 1,
  bar => 0,
  baz => undef,
);

93Friday, August 9, 13



my %hash = (
  foo => 1,
  bar => 0,
  baz => undef,
);

if ( $hash{foo} ) { ... }

93Friday, August 9, 13



my %hash = (
  foo => 1,
  bar => 0,
  baz => undef,
);

if ( $hash{foo} ) { ... }

if ( defined $hash{bar} ) { ... }

93Friday, August 9, 13



my %hash = (
  foo => 1,
  bar => 0,
  baz => undef,
);

if ( $hash{foo} ) { ... }

if ( defined $hash{bar} ) { ... }

if ( exists $hash{baz} ) { ... }

93Friday, August 9, 13



package Network::Socket;
use Moose;

has port => (
  is       => 'ro',
  required => 1,
);

my $socket = Network::Socket->new;

my $socket = Network::Socket->new(port => undef);

94Friday, August 9, 13

so the second one HAS a value -- the value is just undef

"requires" is like "exists" not "defined" or "true"



package Network::Socket;
use Moose;

has port => (
  is       => 'ro',
  isa      => 'Defined',
);

my $socket = Network::Socket->new;

my $socket = Network::Socket->new(port => undef);

95Friday, August 9, 13

Replacing required with a type of "defined" happily makes the undef fail, but the first one 
doesn't -- there is no undefined value given, so we accept it.  We need both.



package Network::Socket;
use Moose;

has port => (
  is       => 'ro',
  isa      => 'Defined',
  required => 1,
);

my $socket = Network::Socket->new;

my $socket = Network::Socket->new(port => undef);

96Friday, August 9, 13

Great!  So, now we can really require a value, and a defined one at that.  We can do better...



package Network::Socket;
use Moose;

has port => (
  is       => 'ro',
  isa      => 'Value',
  required => 1,
);

my $socket = Network::Socket->new;

my $socket = Network::Socket->new(port => undef);

97Friday, August 9, 13

...and limit it to a simple scalar!

This leads to another bit of confusion, which I'll demonstrate right here.



package Employee;

has expense_acct => (
  is  => 'rw'
  isa => 'Int',
);

98Friday, August 9, 13

We're going to add an expense account number to our employees.  Some will have them and 
some won't.  They'll always be integers.

Later on, we'll want to perform some action based on whether the employee has an account.  
We test for definedness because, hey, maybe somebody has account number 0, right?  This is 
fine, but we've got a problem...



package Employee;

has expense_acct => (
  is  => 'rw'
  isa => 'Int',
);

if (defined $employee->expense_acct) {
  ...
}

98Friday, August 9, 13

We're going to add an expense account number to our employees.  Some will have them and 
some won't.  They'll always be integers.

Later on, we'll want to perform some action based on whether the employee has an account.  
We test for definedness because, hey, maybe somebody has account number 0, right?  This is 
fine, but we've got a problem...



my $employee = Employee->new({
  name  => 'Conrad Veidt',
  title => 'Levity Engineer',
  expense_acct => '8675309',
});

99Friday, August 9, 13

Let's say we bring on some high-paid important guy and we issue him an expense account 
number and he gets to work, and it's a total disaster.  The stock price plunges, there are 
thousands of layoffs, and (worst of all) the programmers stop receiving free soda.
So, we want to bust this guy down to the very bottom.



my $employee = Employee->new({
  name  => 'Conrad Veidt',
  title => 'Levity Engineer',
  expense_acct => '8675309',
});

$employee->title('Telephone Sanitizer');
$employee->expense_acct( undef );

100Friday, August 9, 13

We update his title, and we want to kill his expense account.

Who can see the problem?



my $employee = Employee->new({
  name  => 'Conrad Veidt',
  title => 'Levity Engineer',
  expense_acct => '8675309',
});

$employee->title('Telephone Sanitizer');
$employee->expense_acct( undef );

101Friday, August 9, 13

We can't set expense account to undef, because it must be an int.  

We need the equivalent of delete $hash{key}



my $employee = Employee->new({
  name  => 'Conrad Veidt',
  title => 'Levity Engineer',
  expense_acct => '8675309',
});

$employee->title('Telephone Sanitizer');
$employee->expense_acct( undef );

has expense_acct => (
  is  => 'rw'
  isa => 'Int',
);

101Friday, August 9, 13

We can't set expense account to undef, because it must be an int.  

We need the equivalent of delete $hash{key}



my $employee = Employee->new({
  name  => 'Conrad Veidt',
  title => 'Levity Engineer',
  expense_acct => '8675309',
});

$employee->title('Telephone Sanitizer');
$employee->clear_expense_acct;

has expense_acct => (
  is  => 'rw'
  isa => 'Int',
  clearer   => 'clear_expense_acct',
);

102Friday, August 9, 13

…and that's the clearer.  The clearer makes the attribute become unset.

(in case anybody asks, yes, you can clear a required attribute; caveat codor)



my $employee = Employee->new({
  name  => 'Conrad Veidt',
  title => 'Levity Engineer',
  expense_acct => '8675309',
});

$employee->title('Telephone Sanitizer');
$employee->clear_expense_acct;

has expense_acct => (
  is  => 'rw'
  isa => 'Int',
  clearer   => 'clear_expense_acct',
  predicate => 'has_expense_acct',
);

103Friday, August 9, 13

That predicate is pretty handy -- if the clearer is "delete," the predicate is "exists."  For 
example, we might as well use it here...



if (defined $employee->expense_acct) {
  ...
}

has expense_acct => (
  is  => 'rw'
  isa => 'Int',
  clearer   => 'clear_expense_acct',
  predicate => 'has_expense_acct',
);

104Friday, August 9, 13



has expense_acct => (
  is  => 'rw'
  isa => 'Int',
  clearer   => 'clear_expense_acct',
  predicate => 'has_expense_acct',
);

if ($employee->has_expense_acct) {
  ...
}

105Friday, August 9, 13

the intent is a lot clearer!

we can use this for some really really useful stuff, like imagine this...



package Employee;

sub salary {
  my ($self) = @_;

  Salary->for_employee( $self );
}

106Friday, August 9, 13

So, we want a way to compute the employee's salary, and it's computed by this Salary 
package based on his title, start date, age, interoffice politics, and maybe some other stuff.

It's an expensive calculation, so we want to avoid doing it a lot, so we might do this:



has _salary => (
  is  => 'rw',
  isa => 'Int',
  predicate => '_has_salary',
);

sub salary {
  my ($self) = @_;

  return $self->_salary if $self->_has_salary;

  my $salary = Salary->for_employee($self);
  return $self->_salary($salary);
}

107Friday, August 9, 13

We just make a private attribute -- we're using the leading underscore just like we would 
anywhere else in OO perl -- and have our salary method use it as a cache.  In other words, 
we don't compute the value until we need to, and once we've computed it once, we hang on 
to it.  We compute it lazily.
This pattern is so useful that it's built into Moose.



has salary => (
  is   => 'rw',
  isa  => 'Int',
  default   => sub {
    my ($self) = @_;
    return Salary->for_employee( $self );
  },
);

108Friday, August 9, 13

We put the routine for computing the default into a sub as the default value -- we can do this 
for any attribute, by the way, and it gets the object as its argument.  This isn't enough, 
though, because this is going to compute the salary as soon as we make the object.  We want 
to do it lazily.



has salary => (
  is   => 'rw',
  isa  => 'Int',
  lazy => 1,
  default   => sub {
    my ($self) = @_;
    return Salary->for_employee( $self );
  },
);

109Friday, August 9, 13

so we just tell it to be lazy!  now the accessor will generate a default value any time we try to 
read it while it's unset.

Note that lazy attributes *require* default values.

So what's the next problem?



has salary => (
  is   => 'rw',
  isa  => 'Int',
  lazy => 1,
  builder => '_build_salary',
);

sub _build_salary {
  my ($self) = @_;
  return Salary->for_employee( $self );
}

110Friday, August 9, 13

I'm not going to use default, though, I'm going to use builder.  It's *exactly the same*, but it 
calls a method on the object, so you can put your default sub in a separate place, and it's 
easy to override.  Great!

So what's the next problem?



111Friday, August 9, 13

we've got a guy who gets demoted from a corner office to a basement closet

ugh.  when we demote him, we want his salary to change!

this is extremely easy to solve



my $employee = Employee->new({

111Friday, August 9, 13

we've got a guy who gets demoted from a corner office to a basement closet

ugh.  when we demote him, we want his salary to change!

this is extremely easy to solve



my $employee = Employee->new({
  name  => 'David Niven',

111Friday, August 9, 13

we've got a guy who gets demoted from a corner office to a basement closet

ugh.  when we demote him, we want his salary to change!

this is extremely easy to solve



my $employee = Employee->new({
  name  => 'David Niven',
  title => 'Managing Director',

111Friday, August 9, 13

we've got a guy who gets demoted from a corner office to a basement closet

ugh.  when we demote him, we want his salary to change!

this is extremely easy to solve



my $employee = Employee->new({
  name  => 'David Niven',
  title => 'Managing Director',
});

111Friday, August 9, 13

we've got a guy who gets demoted from a corner office to a basement closet

ugh.  when we demote him, we want his salary to change!

this is extremely easy to solve



my $employee = Employee->new({
  name  => 'David Niven',
  title => 'Managing Director',
});

say $employee->salary;  # ==> 500_000

111Friday, August 9, 13

we've got a guy who gets demoted from a corner office to a basement closet

ugh.  when we demote him, we want his salary to change!

this is extremely easy to solve



my $employee = Employee->new({
  name  => 'David Niven',
  title => 'Managing Director',
});

say $employee->salary;  # ==> 500_000

$employee->title('Pencil Maintenance');

111Friday, August 9, 13

we've got a guy who gets demoted from a corner office to a basement closet

ugh.  when we demote him, we want his salary to change!

this is extremely easy to solve



my $employee = Employee->new({
  name  => 'David Niven',
  title => 'Managing Director',
});

say $employee->salary;  # ==> 500_000

$employee->title('Pencil Maintenance');

say $employee->salary;  # ==> 500_000

111Friday, August 9, 13

we've got a guy who gets demoted from a corner office to a basement closet

ugh.  when we demote him, we want his salary to change!

this is extremely easy to solve



has salary => (
  is   => 'rw',
  isa  => 'Int',
  lazy => 1,
  clearer   => 'clear_salary',
  builder   => '_build_salary',
);

112Friday, August 9, 13

We add that clear_salary clearer.  Why is this useful?  Well, lazy attributes work a lot like I 
hacked up, earlier:



sub salary {
  my ($self) = @_;

  return $self->_salary if $self->_has_salary;

  my $salary = Salary->for_employee($self);
  return $self->_salary($salary);
}

113Friday, August 9, 13

…if we already have a set value, return it; otherwise, calculate it…

…so if we have a clearer, and we unset the attribute, next time we read it, the builder is called 
again!



has salary => (
  is   => 'rw',
  isa  => 'Int',
  lazy => 1,
  clearer   => 'clear_salary',
  builder   => '_build_salary',
);

114Friday, August 9, 13

All that remains is a way to make sure the clearer gets called whenever we need it to be.  This 
is easy, too...



has salary => (
  is   => 'rw',
  isa  => 'Int',
  lazy => 1,
  clearer   => 'clear_salary',
  builder   => '_build_salary',
);

has title => (
  is       => 'rw',
  isa      => 'Str',
  required => 1,
);

115Friday, August 9, 13

here's what we had in our "title" attribute declaration;  all we do now is add...



has salary => (
  is   => 'rw',
  isa  => 'Int',
  lazy => 1,
  clearer   => 'clear_salary',
  builder   => '_build_salary',
);

has title => (
  is       => 'rw',
  isa      => 'Str',
  required => 1,
  trigger  => sub {
    my ($self) = @_;
    $self->clear_salary;
  },
);

116Friday, August 9, 13

ta daaaaa



has salary => (
  is   => 'rw',
  isa  => 'Int',
  lazy => 1,
  clearer   => 'clear_salary',
  builder   => '_build_salary',
);

117Friday, August 9, 13

Finally, you see here that we've made salary read/write.  We probably want to eliminate the 
ability to directly change the user's salary, since we want it to follow our salary-computing 
library's rules.  Part of this is simple...



has salary => (
  is   => 'ro',
  isa  => 'Int',
  lazy => 1,
  clearer   => 'clear_salary',
  builder   => '_build_salary',
);

118Friday, August 9, 13

...we change the attribute to read-only.  That's a good start, but there's still a way that the 
user can set the salary and bypass our algorithm.  Anybody?



my $employee = Employee->new({
  name   => 'Ricardo Signes',
  title  => 'Research & Development',
  salary => 1_000_000,
});

119Friday, August 9, 13

It can still be specified at construction time!  Since there won't be a value set, it won't ever 
call the getter.  How do we avoid this?



has salary => (
  is   => 'ro',
  isa  => 'Int',
  lazy => 1,
  clearer   => 'clear_salary',
  builder   => '_build_salary',
  init_arg  => 'salary',
);

120Friday, August 9, 13

Well, there's another "has" argument called init_arg, and it controls the name used to 
initialize the attribute in the constructor.  By default, it's just the attribute name.



has salary => (
  is   => 'ro',
  isa  => 'Int',
  lazy_build => 1,
  init_arg   => 'yearly_salary',
);

121Friday, August 9, 13

If we want to change it to something else, we can do that -- this can be useful for offering 
"public" names for "private" (meaning leading underscore) attributes.  But we can also do this:



has salary => (
  is   => 'ro',
  isa  => 'Int',
  lazy_build => 1,
  init_arg   => undef,
);

122Friday, August 9, 13

Now there is no init_arg for salary, so there is no way to specify it in the constructor.

(If specified, it will be ignored, not fatal.  (This sucks.))



checkpoint:  attributes
unset, build, lazy

• predicate

• clearer

• builder

• lazy

• lazy_build

123Friday, August 9, 13

Okay!  So we've seen a lot about how to produce more powerful behavior centered around 
attributes.  We're seeing how Moose makes a lot of pretty powerful, valuable features 
available with very little work required -- at least with regard to state.  Let's go back to 
talking about methods again.



Methods

124Friday, August 9, 13



package Network::Socket;
use Moose;

sub send_string {
  my ($self, $string) = @_;
  ...;
}

sub send_lines {
  my ($self, $lines) = @_;
  ...;
}

125Friday, August 9, 13

So, we're going back to our network socket example.  We've added some methods that we'll 
use to send a hunk of text, or a sequence of lines.  All the network code isn't really relevant 
to this example, so I'm leaving it out.
Now we want to write a subclass that does a bunch of debugging stuff.  Part of that will be to 
print out a notice when we send stuff, describing the new client state.



package Network::Socket::Noisy;
use Moose;
extends 'Network::Socket';

override send_string => sub {
  my ($self, $string) = @_;
  my $result = super;
  say $self->describe_client_state;
  return $result;
};

override send_lines => sub {
  my ($self, $lines) = @_;
  my $result = super;
  say $self->describe_client_state;
  return $result;
};

126Friday, August 9, 13

So, we've overridden these methods to do the original job, then add this hunk of output -- 
and let's just take describe_client_state as granted -- and then return the result of calling the 
superclass method.  So, what's the huge problem we've introduced?  (Anybody?)

Well, see, I didn't show you the return value of those methods...



package Network::Socket;
use Moose;

sub send_string {
  my ($self, $string) = @_;
  ...;
  return $reply;
}

sub send_lines {
  my ($self, $lines) = @_;
  ...;
  return wantarray ? @replies
                   : sum { length } @replies;
}

127Friday, August 9, 13

Anybody now?

Ugh!  These methods don't all just return a scalar…



package Network::Socket::Noisy;
use Moose;
extends 'Network::Socket';

override send_string => sub {
  my ($self, $string) = @_;
  my $result = super;
  say $self->describe_client_state;
  return $result;
};

override send_lines => sub {
  my ($self, $lines) = @_;
  my $result = super;
  say $self->describe_client_state;
  return $result;
};

128Friday, August 9, 13

We wrote this code...



package Network::Socket::Noisy;
use Moose;
extends 'Network::Socket';

override send_string => sub {
  my ($self, $string) = @_;
  my $result = super;
  say $self->describe_client_state;
  return $result;
};

override send_lines => sub {
  my ($self, $lines) = @_;
  my $result = super;
  say $self->describe_client_state;
  return $result;
};

129Friday, August 9, 13

...which forces scalar context on the superclass call, and then returns a scalar no matter 
what.
send_lines might return a list, and now we've broken any code that relied on the contextual 
difference in return values

We can try to avoid this in a bunch of ways, but they're awful.  For example, imagine…



override send_lines => sub {
  my ($self, $lines) = @_;

  my @result = wantarray ? super : scalar super;

  say $self->describe_client_state;

  return wantarray ? @result : $result[0];
};

130Friday, August 9, 13

We'll have to do this in both places, and anyplace else.  It's just gross.  Worse, it might not be 
that simple.  We don't really want to get in the way of the return value processing, we just 
want to add some extra behavior to be run after the method.  Moose makes this easy.



after send_lines => sub {
  my ($self) = @_;

  say $self->describe_client_state;
};

131Friday, August 9, 13

See!  Easy!  It's so easy that we can just apply the same thing to send_string...



after send_string => sub {
  my ($self) = @_;

  say $self->describe_client_state;
};

after send_lines => sub {
  my ($self) = @_;

  say $self->describe_client_state;
};

132Friday, August 9, 13

And since we're modifying that method exactly the same way, we can just say this...



after [ 'send_string', 'send_lines' ] => sub {
  my ($self) = @_;

  say $self->describe_client_state;
};

133Friday, August 9, 13

and if we have a convention for method naming and we just want to apply this modifier to 
any send_ method, we can write...



after qr/^send_/ => sub {
  my ($self) = @_;

  say $self->describe_client_state;
};

134Friday, August 9, 13

Now any superclass method starting with send_ gets this code run after it!  We can add 
modifiers multiple times, either because we're subclassing several levels deep or because we 
want two conceptually distinct "after" modifiers on one method.  Be careful: if your regex 
matches nothing, there is no warning that you might have screwed up.
And of course, if we can after, we can also ...



before qr/^send_/ => sub {
  my ($self) = @_;

  say $self->describe_client_state;
};

135Friday, August 9, 13

before.

there are other modifiers, too.  for example...



sub send_string {
  my ($self, $string) = @_;
  ...;
  return $reply;
}

136Friday, August 9, 13

send_string has a nice simple return value, just the string we got back.  Let's log what we 
send and what we get back -- we can't use before or after for this, because neither can see 
the return value.  Instead, we're going wrap the whole method up with "around"



around send_string => sub {
  my ($orig, $self, $string) = @_;
  
  say "about to send $string";

  my $reply = $self->$orig( $string );

  say "got $reply in response";

  return $reply;
};

137Friday, August 9, 13

So, there are a few things to note here... 



around send_string => sub {
  my ($orig, $self, $string) = @_;
  
  say "about to send $string";

  my $reply = $self->$orig( $string );

  say "got $reply in response";

  return $reply;
};

138Friday, August 9, 13

first, we get a reference to the original code before the rest of the normal arguments when 
our around "method modifier" is called



around send_string => sub {
  my ($orig, $self, $string) = @_;
  
  say "about to send $string";

  my $reply = $self->$orig( $string );

  say "got $reply in response";

  return $reply;
};

139Friday, August 9, 13

then we're responsible for calling the method, doing whatever we want, and returning the 
return value.  (this means it's up to us to keep track of context, although there are a few 
helpers for that on CPAN; Contextual::Call, for example)

the around modifier has a bunch of uses, some obvious or common, and some pretty 
esoteric.  one of the more common uses we see, beyond the "add instrumentation" seen 
above, is arg/rv munging



package HTML::Munger;

sub munge_html {
  my ($orig, $html_tree) = @_;

  # do all kinds of tree-munging stuff to
  # $html_tree

  return $new_html_tree;
}

140Friday, August 9, 13

So we have this class that mucks about with HTML::Tree objects, and we like it, but we want 
to stop thinking about parsing and re-stringifying our HTML.  We just want to deal in strings.  
So we can write a simple subclass...



package HTML::Munger::Stringy;
use Moose;
extends 'HTML::Munger';

around munge_html => sub {
  my ($orig, $self, $html_string) = @_;
  
  my $tree = HTML::Tree->parse($html_string);

  my $new_tree = $self->$orig( $tree );

  return $new_tree->as_HTML;
};

141Friday, August 9, 13

and now it expects and returns strings



package Employee;

has salary => (
  is   => 'rw',
  isa  => 'Int',
  lazy => 1,
  clearer   => 'clear_salary',
  builder   => '_build_salary',
);

has title => (
  ...
  trigger  => sub {
    my ($self) = @_;
    $self->clear_salary;
  },
);

142Friday, August 9, 13

Okay, one last example of using method modifiers -- and we're going to combine them with 
methods from attributes!

Everybody remember our Employee class?   We had to clear the salary when we changed the 
title so that it could be recomputed.  What if we have to go the other way?



has salary => (
  ...
  lazy => 1,
);

has pay_grade => (
  ...
  lazy => 1,
);

sub _build_pay_grade {
  my ($self) = @_;

  Salary->pay_grade($self->salary);
}

143Friday, August 9, 13

Now we have the same kind of problem, but in reverse.  If we change title, salary gets cleared 
so it can get re-set.  The problem is that we need to clear pay_grade, too, any time we clear 
the salary.  We can't use a trigger, because… yeah, triggers aren't called on clearing.  D'oh!  
One again, we can just use a method modifier.



after clear_salary => sub {
  my ($self) = @_;

  $self->clear_pay_grade;
};

144Friday, August 9, 13

After all, even though clear_salary is generated by the "has" statement, it's still a method, and 
we can modify it with all the method modifiers we've got.



checkpoint: 
method modifiers

145Friday, August 9, 13



checkpoint: 
method modifiers

• after

145Friday, August 9, 13



checkpoint: 
method modifiers

• after

• before

145Friday, August 9, 13



checkpoint: 
method modifiers

• after

• before

• around

145Friday, August 9, 13



checkpoint: 
method modifiers

• after

• before

• around

•  modify [ ... ] => sub { ... }

145Friday, August 9, 13



checkpoint: 
method modifiers

• after

• before

• around

•  modify [ ... ] => sub { ... }

•  modify qr/.../ => sub { ... }

145Friday, August 9, 13



Code Reuse

146Friday, August 9, 13



Code Reuse with Moose

Network::Socket

Network::Socket::Noisy

147Friday, August 9, 13

so, we made a noisy subclass, remember?



Code Reuse with Moose

Network::Socket

Network::Socket::Noisy Network::Socket::SSL

148Friday, August 9, 13

we also have another subclass, for SSL sockets

what if we want both extensions?



Code Reuse with Moose

Network::Socket

Network::Socket::Noisy Network::Socket::SSL

Network::Socket::Noisy:SSL

149Friday, August 9, 13

The experienced OO programmers are those in the audience who (a) saw this coming and (b) 
groaned anyway when they saw the slide.



Multiple Inheritance

150Friday, August 9, 13



Multiple Inheritance

150Friday, August 9, 13



Multiple Inheritance

• Moose supports MI

150Friday, August 9, 13



Multiple Inheritance

• Moose supports MI

• method modifiers can 
make MI less painful

150Friday, August 9, 13



Multiple Inheritance

• Moose supports MI

• method modifiers can 
make MI less painful

• but it doesn't really matter

150Friday, August 9, 13



Multiple Inheritance

• Moose supports MI

• method modifiers can 
make MI less painful

• but it doesn't really matter

• nobody uses MI in Moose

150Friday, August 9, 13



Roles!

151Friday, August 9, 13

Who here has heard about roles?
Who has no idea what they are?
Roles are called "traits" in most languages that support them.  Does that help?



Roles in a Nutshell

152Friday, August 9, 13

One of the biggest jobs of a role is to act like an #include statement.



Roles in a Nutshell

#include

152Friday, August 9, 13

One of the biggest jobs of a role is to act like an #include statement.



package Role::Logger;
use Moose::Role;

sub log {
  my ($self, $level, $message) = @_;
  return unless $level >= $self->level;
  say $message;
}

has level => (
  is  => 'rw',
  isa => 'Int',
  default => 0,
);

no Moose::Role;

153Friday, August 9, 13

So, here's a really, really simple role.  It looks just like a class, right?  It's got attributes and 
methods.

It isn't a class, though.  We can't call new on it, we can't subclass it with "extends," and we 
can't write a role that is a subclass.  Roles are not very classy.



package Role::Logger;
use Moose::Role;

sub log { ... }
has level => ( ... );

package Class;
use Moose;

sub do_stuff {
  ...
  $self->log(5 => "We just did stuff.");
}

154Friday, August 9, 13

So, then we have a class, and we want that class to be able to use our logging code.  We act 
like we've got that logger method in our class and just go ahead and call it.

To get the role composed into our class, we just say...



package Role::Logger;
use Moose::Role;

sub log { ... }
has level => ( ... );

package Class;
use Moose;

with 'Role::Logger';

sub do_stuff {
  ...
  $self->log(5 => "We just did stuff.");
}

155Friday, August 9, 13

the "with" function says, "take this role and use it in my class"

what does that mean?  well, it means this:



package Class;
use Moose;

sub log { ... }
has level => ( ... );

sub do_stuff {
  ...
  $self->log(5 => "We just did stuff.");
}

156Friday, August 9, 13

Everything we said in Role::Logger gets included, right there.  Once you have that with, the 
inclusion happens and everything from there on is normal.  So you can go ahead and do stuff 
like this:



package Class;
use Moose;

with 'Role::Logger';

after log => sub { ... };

sub do_stuff {
  ...
  $self->log(5 => "We just did stuff.");
}

157Friday, August 9, 13

Role::Logger will give us a "log" method, and then we can add some extra "after" behavior.  



package Class;
use Moose;

with 'Role::Logger';

after log => sub { ... };
has '+level' => (default => 3);

sub do_stuff {
  ...
  $self->log(5 => "We just did stuff.");
}

158Friday, August 9, 13

...and the same goes for attributes.

There's one more really important kind of thing we can put in a role...



package Role::Logger;
use Moose::Role;

sub log {
  my ($self, $level, $message) = @_;
  return unless $level >= $self->level;
  $self->emit( $message );
}

has level => ( ... );

no Moose::Role;

159Friday, August 9, 13

Let's say we want this logger role to be able to send to a text file, or STDOUT, or syslog, or 
whatever.  We replace our old code, which just used say, with a method named emit.

We don't want to implement this in the role, though, we're going to leave it up to the class, 
and we note that.



package Role::Logger;
use Moose::Role;

requires 'emit';

sub log {
  my ($self, $level, $message) = @_;
  return unless $level >= $self->level;
  $self->emit( $message );
}

has level => ( ... );

no Moose::Role;

160Friday, August 9, 13

We just add this "requires" line.  It means that "if you're going to use this role, you are 
required to have already implemented this method."

Then, when we compose the role...



package Class;
use Moose;

sub log { ... }
has level => ( ... );

sub do_stuff {
  ...
  $self->log(5 => "We just did stuff.");
}

161Friday, August 9, 13

Instead of getting just this, we get something more like…



package Class;
use Moose;

die "you forgot 'emit'"
  unless __PACKAGE__->can('emit');
sub log { ... }
has level => ( ... );

sub do_stuff {
  ...
  $self->log(5 => "We just did stuff.");
}

162Friday, August 9, 13

Nice!  Unless the class is providing the requires method, it blows up.



package Class;
use Moose;

with 'Role::Logger';

sub do_stuff {
  ...
  $self->log(5 => "We just did stuff.");
}

163Friday, August 9, 13

We can compose as many roles as we want into our class...



package Class;
use Moose;

with 'Role::Logger',
     'Role::Reporter';

sub do_stuff {
  ...
  $self->log(5 => "We just did stuff.");
}

164Friday, August 9, 13

We can compose as many roles as we want into our class...



package Class;
use Moose;

with 'Role::Logger',
     'Role::Reporter',
     'Role::Socket';

sub do_stuff {
  ...
  $self->log(5 => "We just did stuff.");
}

165Friday, August 9, 13

So, what do these new roles we brought in do?  Let's imagine they each provide one method...



package Class;
use Moose;

with 'Role::Logger',
     'Role::Reporter',  # provides "send"
     'Role::Socket';    # provides "send"

sub do_stuff {
  ...
  $self->log(5 => "We just did stuff.");
}

166Friday, August 9, 13

O no!  A method name conflict!  Well, what happens?  First, let's see what would happen in 
other systems.



package Class;

with 'Role::Logger',
     'Role::Reporter',  # provides "send"
     'Role::Socket';    # provides "send"

Logger SocketReporter

Class

167Friday, August 9, 13

With multiple inheritence, I think the problems are pretty well known.  Only one of these 
would get called, so we probably have some method to try to disambiguate in our subclass, 
but it's a big hot mess.

Also, that hot mess won't manifest until runtime.  Everying works just fine until we try to 
print our log message right to our HTTP socket.



package Class;

with 'Role::Logger',
     'Role::Reporter',  # provides "send"
     'Role::Socket';    # provides "send"

Logger SocketReporter

Class

168Friday, August 9, 13

using mixins, the problems basically remain



package Class;

with 'Role::Logger',
     'Role::Reporter',  # provides "send"
     'Role::Socket';    # provides "send"

Logger SocketReporter

Composite 
Role Class

169Friday, August 9, 13

With roles, when we compose multiple roles into one class, Moose first combines all the roles 
into one role.  *That* role is the thing we actually include, not each role in any sort of order.  
The combining process detects any conflict, and if we have conflicting method definitions, it 
is a compile time failure.



package Class;

with 'Role::Logger',
     'Role::Reporter',  # provides "send"
     'Role::Socket';    # provides "send"

Logger SocketReporter

Composite 
Role Class

170Friday, August 9, 13

So, right here, this will fail.  It will fail at compile time.  We can't have any bizarre runtime 
behavior because we can't even compile this code.

There are ways to resolve this -- we can exclude or rename methods from particular roles, 
like this...



package Class;

with 'Role::Logger',
     'Role::Reporter' => {
       -alias    => { send => 'send_report' },
       -excludes => 'send',
     },
     'Role::Socket';    # provides "send"

Logger SocketReporter

Composite 
Role Class

171Friday, August 9, 13

...but this is almost *always* a bad idea, and I promise I'll explain why.  Let's not even talk 
about doing what this slide shows, though.  Just remember:  if you see this, it's probably a 
design problem.  In general, if you are doing multiple roles that have conflicting method 
names, it is a sign that you should refactor your classes.



#include

172Friday, August 9, 13

Anyway, now it's pretty clear that role composition is more sophisticated than #include, so 
let's review the ways

That last bit is really important.  We know what methods came from where -- but the really 
great thing is less detailed:  we know all the roles that we included in our class.



#include

• roles can make demands

172Friday, August 9, 13

Anyway, now it's pretty clear that role composition is more sophisticated than #include, so 
let's review the ways

That last bit is really important.  We know what methods came from where -- but the really 
great thing is less detailed:  we know all the roles that we included in our class.



#include

• roles can make demands

• bits can be excluded or renamed (but don't do this)

172Friday, August 9, 13

Anyway, now it's pretty clear that role composition is more sophisticated than #include, so 
let's review the ways

That last bit is really important.  We know what methods came from where -- but the really 
great thing is less detailed:  we know all the roles that we included in our class.



#include

• roles can make demands

• bits can be excluded or renamed (but don't do this)

• we're including code, not strings

172Friday, August 9, 13

Anyway, now it's pretty clear that role composition is more sophisticated than #include, so 
let's review the ways

That last bit is really important.  We know what methods came from where -- but the really 
great thing is less detailed:  we know all the roles that we included in our class.



#include

• roles can make demands

• bits can be excluded or renamed (but don't do this)

• we're including code, not strings

• we have a record of what was included

172Friday, August 9, 13

Anyway, now it's pretty clear that role composition is more sophisticated than #include, so 
let's review the ways

That last bit is really important.  We know what methods came from where -- but the really 
great thing is less detailed:  we know all the roles that we included in our class.



"Vertical" Code Reuse

Subclass

Class

173Friday, August 9, 13



"Vertical" Code Reuse

Subclass->isa('Class')

Subclass

Class

173Friday, August 9, 13



"Horizontal" Code Reuse

Role Class

174Friday, August 9, 13



"Horizontal" Code Reuse

Class->does('Role')

Role Class

174Friday, August 9, 13



package Network::Socket;
use Moose;
sub send_string { ... }
sub send_lines  { ... }

175Friday, August 9, 13

Okay, remember Network::Socket?  Now let's imagine we have this Blob class that represents 
a hunk of data, and we have a method to send it across a network connection, which we'll 
assume is part of Network::Socket.



package Network::Socket;
use Moose;
sub send_string { ... }
sub send_lines  { ... }

package Blob;

175Friday, August 9, 13

Okay, remember Network::Socket?  Now let's imagine we have this Blob class that represents 
a hunk of data, and we have a method to send it across a network connection, which we'll 
assume is part of Network::Socket.



package Network::Socket;
use Moose;
sub send_string { ... }
sub send_lines  { ... }

package Blob;

sub send_to {
  my ($self, $target) = @_;

  confess "can't send to $target"
    unless $target->isa('Network::Socket');

  $target->send_string( $self->contents );
}

176Friday, August 9, 13

So, we're going to do a little input validation, and traditionally the way to check for an 
interface is to use "isa"  which we do right here...



package Network::Socket;
use Moose;
sub send_string { ... }
sub send_lines  { ... }

package Blob;

sub send_to {
  my ($self, $target) = @_;

  confess "can't send to $target"
    unless $target->isa('Network::Socket');

  $target->send_string( $self->contents );
}

177Friday, August 9, 13

Of course, the problem is that now if we want to write some other kind of valid target for the 
Blob to send to, it has to subclass Network::Socket, which has a zillion methods, attributes, 
and all kinds of assumptions.  Anybody maintaining Blob will think they can rely on any of 
those, and we don't want to encourage that.  One option would be to say...



package Network::Socket;
use Moose;
sub send_string { ... }
sub send_lines  { ... }

package Blob;

sub send_to {
  my ($self, $target) = @_;

  confess "can't send to $target"
    unless $target->can('send_string');

  $target->send_string( $self->contents );
}

178Friday, August 9, 13

...and that's a lot better, but we can do better.  For one thing, how do we know it has the 
right semantics for that method?  What if it's a coincidence?

Obviously we're getting at roles, right?  Right.  It's easy...



package Network::Socket;
use Moose;
sub send_string { ... }
sub send_lines  { ... }

package Blob;

sub send_to {
  my ($self, $target) = @_;

  confess "can't send to $target"
    unless $target->does('Transmitter');

  $target->send_string( $self->contents );
}

179Friday, August 9, 13

We just require that Network::Socket "does" the Transmitter role.  What's that role look like?



package Network::Socket;
use Moose;

with 'Transmitter';

sub send_string { ... }
sub send_lines  { ... }

package Transmitter;
use Moose::Role;

requires 'send_string';

180Friday, August 9, 13

Seriously, that's it.  That's all.  Here, we're not using roles to act like an #include of code, 
we're using it because it can act as a contract:  by including Transmitter, the author of 
Network::Socket promised to implement send_string.   Moose makes sure he keeps his 
promise and lets us know by, well, not *dying*.



package Network::Socket;
use Moose;

with 'Transmitter';

sub send_string { ... }
sub send_lines  { ... }

package Transmitter;
use Moose::Role;

requires 'send_string';

181Friday, August 9, 13

So, roles are going to serve us in two ways:  they're going to let us re-use bundles of 
features, and they're going to let us check that classes or objects provide well-known, 
promised bundles of features.



package Role::Logger;
use Moose::Role;

requires 'emit';

sub log {
  my ($self, $level, $message) = @_;
  return unless $level >= $self->level;
  $self->emit( $message );
}

has level => ( ... );

no Moose::Role;

182Friday, August 9, 13

Remember when we added the "emit" requirement to our Logger role?  That required an emit 
method on the composing class, which was basically going to lock anybody down to one kind 
of emitter.  That is: anybody including the role has to implement his or her own specific 
"emit," or include a specific role that provides one.

We can do something much more flexible, here.



has xmitter => (
  is   => 'ro',
  required => 1,
);

sub log {
  my ($self, $level, $message) = @_;
  return unless $level >= $self->level;
  $self->emit( $message );
}

has level => ( ... );

183Friday, August 9, 13

We add a transmitter attribute...



has xmitter => (
  is   => 'ro',
  required => 1,
);

sub log {
  my ($self, $level, $message) = @_;
  return unless $level >= $self->level;
  $self->xmitter->send_string( $message );
}

has level => ( ... );

184Friday, August 9, 13

We use its send_string method to emit our log messages...



has xmitter => (
  is   => 'ro',
  does => 'Transmitter',
  required => 1,
);

sub log {
  my ($self, $level, $message) = @_;
  return unless $level >= $self->level;
  $self->xmitter->send_string( $message );
}

has level => ( ... );

185Friday, August 9, 13

and then we put a type constraint on the transmitter -- it has to be something that ->does 
the Transmitter role!

does is a shortcut for "isa" requiring that something do a given role



Roles at Work

186Friday, August 9, 13

When I said that people in Moose never used multiple inheritance, I wasn't stretching the 
truth very much.  In fact, lots of Moose users never even use *single* inheritance.  They just 
use roles.

Now I want to take a momen to talk about the "promise" that role inclusion generates, with a 
brief look back at excluding and renaming stuff…



Roles at Work

• reusable bundles of code

186Friday, August 9, 13

When I said that people in Moose never used multiple inheritance, I wasn't stretching the 
truth very much.  In fact, lots of Moose users never even use *single* inheritance.  They just 
use roles.

Now I want to take a momen to talk about the "promise" that role inclusion generates, with a 
brief look back at excluding and renaming stuff…



Roles at Work

• reusable bundles of code

• "composable units of behavior"

186Friday, August 9, 13

When I said that people in Moose never used multiple inheritance, I wasn't stretching the 
truth very much.  In fact, lots of Moose users never even use *single* inheritance.  They just 
use roles.

Now I want to take a momen to talk about the "promise" that role inclusion generates, with a 
brief look back at excluding and renaming stuff…



Roles at Work

• reusable bundles of code

• "composable units of behavior"

• named interfaces

186Friday, August 9, 13

When I said that people in Moose never used multiple inheritance, I wasn't stretching the 
truth very much.  In fact, lots of Moose users never even use *single* inheritance.  They just 
use roles.

Now I want to take a momen to talk about the "promise" that role inclusion generates, with a 
brief look back at excluding and renaming stuff…



Roles at Work

• reusable bundles of code

• "composable units of behavior"

• named interfaces

• with promise to implement that interface

186Friday, August 9, 13

When I said that people in Moose never used multiple inheritance, I wasn't stretching the 
truth very much.  In fact, lots of Moose users never even use *single* inheritance.  They just 
use roles.

Now I want to take a momen to talk about the "promise" that role inclusion generates, with a 
brief look back at excluding and renaming stuff…



Roles at Work

• reusable bundles of code

• "composable units of behavior"

• named interfaces

• with promise to implement that interface

• an alternative to inheritance

186Friday, August 9, 13

When I said that people in Moose never used multiple inheritance, I wasn't stretching the 
truth very much.  In fact, lots of Moose users never even use *single* inheritance.  They just 
use roles.

Now I want to take a momen to talk about the "promise" that role inclusion generates, with a 
brief look back at excluding and renaming stuff…



package Class;

with 'Role::Logger',
     'Role::Reporter' => {
       -alias    => { send => 'send_report' },
       -excludes => 'send',
     },
     'Role::Socket';    # provides "send"

Logger SocketReporter

Composite 
Role

Class

C E N S O R E D

187Friday, August 9, 13

Remember this?  It was that mechanism for resolving method name conflicts.  It let you 
rename methods you got from a role, or just skip them altogether.

This is a *terrible* idea, because it means you're breaking your promise.  That is why this is a 
red flag.  It totally undermines the value of roles as a promised interface.



checkpoint: roles

188Friday, August 9, 13



checkpoint: roles

• roles act a lot like #include

188Friday, August 9, 13



checkpoint: roles

• roles act a lot like #include

• can add methods, modifiers, or attributes

188Friday, August 9, 13



checkpoint: roles

• roles act a lot like #include

• can add methods, modifiers, or attributes

• can require other methods be provided

188Friday, August 9, 13



checkpoint: roles

• roles act a lot like #include

• can add methods, modifiers, or attributes

• can require other methods be provided

• they promise to provide a named interface

188Friday, August 9, 13



checkpoint: roles

package Edible;
use Moose::Role;

...

no Moose::Role;
1;

189Friday, August 9, 13

This is how you write a role.



checkpoint: roles
package Scrapple;
use Moose;

...

with 'Edible';

no Moose;
1;

190Friday, August 9, 13

This is how you include a role.



checkpoint: roles

if ( $thing->does('Edible') ) {
  ...
}

191Friday, August 9, 13

This is how you test for inclusion of a role.



Any 
Questions?

192Friday, August 9, 13

(halftime break begins)

(tell everybody where the cake is)



Type Constraints

193Friday, August 9, 13

Okay, let's talk about type constraints.  The Moose type constraint system is a huge feature.



Types
194Friday, August 9, 13

Like, really, really huge.



Moose Types

195Friday, August 9, 13

(but hey, it's not like you're getting C++ either, so that's okay)



Moose Types

• the Moose type system isn't really types

195Friday, August 9, 13

(but hey, it's not like you're getting C++ either, so that's okay)



Moose Types

• the Moose type system isn't really types

• it's not like you're getting Haskell or Scala

195Friday, August 9, 13

(but hey, it's not like you're getting C++ either, so that's okay)



Moose Types

• the Moose type system isn't really types

• it's not like you're getting Haskell or Scala

• it's a way to do pervasive data validation

195Friday, August 9, 13

(but hey, it's not like you're getting C++ either, so that's okay)



Moose Types

• the Moose type system isn't really types

• it's not like you're getting Haskell or Scala

• it's a way to do pervasive data validation

• at runtime

195Friday, August 9, 13

(but hey, it's not like you're getting C++ either, so that's okay)



has children => (
  is  => 'ro',
  isa => ArrayRef[ Node ],
  default => sub {
    return [ ];
  },
);

196Friday, August 9, 13

The most common place to see types is in an attribute declaration's "isa" parameter, but we 
can use them all over the place.



sub walk_nodes {
  my ($self, $callback) = @_;

  CodeRef->assert_valid( $callback );

  ...
}

197Friday, August 9, 13



has children => (
  is  => 'ro',
  isa => ArrayRef[ Node ],
  default => sub {
    return [ ];
  },
);

198Friday, August 9, 13

So, you might have noticed that earlier, I was using strings for types, and now I'm using 
barewords.  That's not a mistake, it's a conscious decision.  Moose lets you give a stringy 
name for types that were registered by name.  There's a big problem, though:  string types 
are global, so now you're relying on global names not to conflict.  It's gross.



has children => (
  is  => 'ro',
  isa => ArrayRef[ Node ],
  default => sub {
    return [ ];
  },
);

199Friday, August 9, 13

Unless you're using only very simple types, I suggest you always use these other types, which 
look like barewords.  So, let's talk about what "very simple types" means and how to get these 
other kinds of types.



Any
Item
  Bool
  Undef
  Defined
    Value
      Str
        Num
        Int
    Ref
      ArrayRef[…]
      HashRef[…]
      CodeRef
      Object

Moose::Util::TypeConstraints

200Friday, August 9, 13

The core types!  These are pretty much the only types I suggest you use as strings.  They're 
really common, really obvious, and because they're just strings, they're really easy to use.  
There are some I'm not showing here, but nothing you're likely to use much.  They're all 
defined in M:U:TC.

For more complicated types, we end up using MooseX::Types



Any
Item
  Bool
  Undef
  Defined
    Value
      Str
        Num
        Int
    Ref
      ArrayRef[…]
      HashRef[…]
      CodeRef
      Object

"ArrayRef"

Moose::Util::TypeConstraints

200Friday, August 9, 13

The core types!  These are pretty much the only types I suggest you use as strings.  They're 
really common, really obvious, and because they're just strings, they're really easy to use.  
There are some I'm not showing here, but nothing you're likely to use much.  They're all 
defined in M:U:TC.

For more complicated types, we end up using MooseX::Types



Any
Item
  Bool
  Undef
  Defined
    Value
      Str
        Num
        Int
    Ref
      ArrayRef[…]
      HashRef[…]
      CodeRef
      Object

"ArrayRef"

"ArrayRef[ Int ]"

Moose::Util::TypeConstraints

200Friday, August 9, 13

The core types!  These are pretty much the only types I suggest you use as strings.  They're 
really common, really obvious, and because they're just strings, they're really easy to use.  
There are some I'm not showing here, but nothing you're likely to use much.  They're all 
defined in M:U:TC.

For more complicated types, we end up using MooseX::Types



Any
Item
  Bool
  Undef
  Defined
    Value
      Str
        Num
        Int
    Ref
      ArrayRef[…]
      HashRef[…]
      CodeRef
      Object

"ArrayRef"

"ArrayRef[ Int ]"

"HashRef"

Moose::Util::TypeConstraints

200Friday, August 9, 13

The core types!  These are pretty much the only types I suggest you use as strings.  They're 
really common, really obvious, and because they're just strings, they're really easy to use.  
There are some I'm not showing here, but nothing you're likely to use much.  They're all 
defined in M:U:TC.

For more complicated types, we end up using MooseX::Types



Any
Item
  Bool
  Undef
  Defined
    Value
      Str
        Num
        Int
    Ref
      ArrayRef[…]
      HashRef[…]
      CodeRef
      Object

"ArrayRef"

"ArrayRef[ Int ]"

"HashRef"

"HashRef[ Object ]"

Moose::Util::TypeConstraints

200Friday, August 9, 13

The core types!  These are pretty much the only types I suggest you use as strings.  They're 
really common, really obvious, and because they're just strings, they're really easy to use.  
There are some I'm not showing here, but nothing you're likely to use much.  They're all 
defined in M:U:TC.

For more complicated types, we end up using MooseX::Types



package Network::Socket;

has port => (
  is  => 'ro',
  isa => 'Int',
  required => 1,
);

201Friday, August 9, 13

So, this just works, because it's a built-in type.  To get the bareword types, we use a "type 
library."  For example, there's a type library that gives us the bareword-style types for the 
built-in types.



package Network::Socket;

use MooseX::Types::Moose qw(Int);

has port => (
  is  => 'ro',
  isa => Int,
  required => 1,
);

202Friday, August 9, 13

We say that we want to use the Int type from the core moose types, and now we can un-
quote Int.  We can also combine these bareword types...



package Sequence;

use MooseX::Types::Moose
  qw(ArrayRef Int);

has sequence => (
  is  => 'ro',
  isa => ArrayRef[ Int ],
  required => 1,
);

203Friday, August 9, 13

This is where people start freaking out.  "What the hell is that?  This is a source filter, right?  
Are you screwing with the parser to make this work?  How will this interact with my Charm 
Person spell?"

No, there is no magic.  Moose is Perl.  The fact that we're importing this stuff should be a 
hint...



package Sequence;

use MooseX::Types::Moose
  qw(ArrayRef Int);

has sequence => (
  is  => 'ro',
  isa => ArrayRef( [ Int() ] ),
  required => 1,
);

204Friday, August 9, 13

...they're just functions!  What we're doing is nearly equivalent to this code -- but much, 
much less awful to look at.  I will never write these parens.  Just roll with it, man.



package Sequence;

use MooseX::Types::Moose
  qw(ArrayRef Int);

has sequence => (
  is  => 'ro',
  isa => ArrayRef[ Int ],
  required => 1,
);

205Friday, August 9, 13

Okay, so this is nice to look at, and everything, but why do we want to bother with having to 
import stuff?  After all, this would work just fine...



package Sequence;

has sequence => (
  is  => 'ro',
  isa => 'ArrayRef[ Int ]',
  required => 1,
);

206Friday, August 9, 13

...and it sure is a lot less typing!  Well, the big win is code re-use.  Looking only at the core 
types isn't the best example.  The big win with bareword types -- which we tend to call 
"MooseX types" -- is that we can package them up for people to use just the way we used 
MooseX::Types::Moose.



my $dist = CPAN::Dist->new({
  prereqs => {
    'Thing::Plugin::Debug' => '1.203',
    'Thing::Plugin::SSL'   => '0.2',
    'Thing::Plugin::OAuth' => '2.16.2',
  },
});

207Friday, August 9, 13

So, for example, we want to write a library that works like this...  what are we defining here?  
Well, it's a hashref that maps package names to version numbers.  We want to validate every 
part of this.



my $dist = CPAN::Dist->new({
  prereqs => {
    'Thing::Plugin::Debug' => '1.203',
    'Thing::Plugin::SSL'   => '0.2',
    'Thing::Plugin::OAuth' => '2.16.2',
  },
});

has prereqs => (
  ...,
  isa => "HashRef[Str]",
);

208Friday, August 9, 13

This is the best we can do with the core types.  That stinks!  But, if we pick up some re-
usable type libraries from the CPAN, we can do this...



my $dist = CPAN::Dist->new({
  prereqs => {
    'Thing::Plugin::Debug' => '1.203',
    'Thing::Plugin::SSL'   => '0.2',
    'Thing::Plugin::OAuth' => '2.16.2',
  },
});

has prereqs => (
  ...,
  isa => Map[ PackageName, LaxVersionStr ],
);

209Friday, August 9, 13

Now we require that it's a map -- which means a hashref -- where all the keys are valid 
package names and all the values are valid "lax" Perl version strings.



my $dist = CPAN::Dist->new({
  prereqs => {
    'Thing::Plugin::Debug' => '1.203',
    'Thing::Plugin::SSL'   => '0.2',
    'Thing::Plugin:OAuth'  => '2.16.2',
  },
});

has prereqs => (
  ...,
  isa => Map[ PackageName, LaxVersionStr ],
);

210Friday, August 9, 13

This would fail, beacuse we forgot a colon in the module name so it isn't a valid module 
name.



my $dist = CPAN::Dist->new({
  prereqs => {
    'Thing::Plugin::Debug' => '1.203',
    'Thing::Plugin::SSL'   => '0.2',
    'Thing::Plugin::OAuth' => '2..1.2',
  },
});

has prereqs => (
  ...,
  isa => Map[ PackageName, LaxVersionStr ],
);

211Friday, August 9, 13

This would fail, beacuse that's a bogus version.



package Network::Socket::Noisy;

has xmitter => (
  is   => 'ro',
  does => 'Transmitter',
  required => 1,
);

212Friday, August 9, 13

Remember this guy?  Here, we were saying we wanted to require something that included a 
certain role.  This is just a type constraint of another name.  This will come up a lot.  You'll 
want an attribute whose value is known to conform to a certain interface.  By far, I think the 
most common way to do that is with 'does' but there are lots of reasons you might not be 
able to.

The code here is just sugar for...



package Network::Socket::Noisy;
use MooseX::Types; # this gets us role_type

has xmitter => (
  is   => 'ro',
  isa  => role_type('Transmitter'),
  required => 1,
);

213Friday, August 9, 13

the "does" argument to "has" is just sugar for this.  it makes a "role type" and uses that as the 
type constraint.  role_type isn't the only type generator, either, of course.

Let's look at an example from some of my real code.



package Dist::Zilla::Chrome;

has logger => (
  is   => 'ro',
  does => 'Log::Dispatchouli',
  ...,
);

214Friday, August 9, 13

This says that our application's chrome needs to have a logger that does this logging role.  
The problem is that Log::Dispatchouli (a) isn't a role and (b) isn't even Moose

We need a way to fall back on the old way of testing for interface: inheritance and isa.



package Dist::Zilla::Chrome;

has logger => (
  is   => 'ro',
  isa  => 'Log::Dispatchouli',
  ...,
);

215Friday, August 9, 13

Notice that I used a string.  Well, this will *probably* work.  I think it's a bad idea, though.  
There are a lot of quirks regarding how class names get interpreted as a string type, because 
Perl doesn't have first-class class objects -- (explain) -- and that's what's happening here.  
We're using that "string type" system that we said we should avoid.



package Dist::Zilla::Chrome;

use MooseX::Types;

has logger => (
  is   => 'ro',
  isa  => class_type('Log::Dispatchouli'),
  ...,
);

216Friday, August 9, 13

This is what we really want to write.  It will require that the value is an instance of a class that 
isa Log::Dispatchouli.

Finally, sometimes this isn't enough, either.  The reason why is simple, and we've talked 
about it before...



package Network::Socket;
use Moose;
sub send_string { ... }
sub send_lines  { ... }

package Blob;

sub send_to {
  my ($self, $target) = @_;

  confess "can't send to $target"
    unless $target->isa('Network::Socket');

  $target->send_string( $self->contents );
}

217Friday, August 9, 13

Here, we wanted a way to get passed some object and assert that it had the interface we 
wanted.  The problem was that for somebody else to write a new kind of thing that could be a 
$target, they had to inherit all kinds of other methods we don't want, and we're implying to 
the next maintenance programmer that all those methods are fair game.  Do not want!



has logger => (
  is   => 'ro',
  isa  => class_type('Log::Dispatchouli'),
  ...,
);

218Friday, August 9, 13

Well, this is doing the same thing!  We're saying that it has to be a subclass of 
Log::Dispatchouli.  Maybe that's what we want, but if all we want is to demand a method or 
two, then our constraint is too constrictive.  What we really want is a role, but we're dealing 
with poor old legacy code that doesn't have role composition.

The answer we talked about earlier was...



package Network::Socket;
use Moose;
sub send_string { ... }
sub send_lines  { ... }

package Blob;

sub send_to {
  my ($self, $target) = @_;

  confess "can't send to $target"
    unless $target->can('send_string');

  $target->send_string( $self->contents );
}

219Friday, August 9, 13

"If it can answer this method, it's good enough!"  also expressed as "If it quacks like a duck, 
it's a duck."  We rejected this because roles are better.  They let us not just say THAT we have 
a method but what kind of interface it promises.

Well, that's great, but that only helps us with Moose classes!  Duck typing is really, really 
useful if you're dealing with some kind of legacy class that doesn't support roles.



has logger => (
  is   => 'ro',
  isa  => duck_type([ 'log', 'log_debug' ]),
  ...,
);

220Friday, August 9, 13

Ta daaaa!  Now we need to provide *any object* as long as it says it will respond to all those 
methods.

If we pass in something we thought was okay, but that fails the type constraint, we even get a 
nice error message like this...



Log::Logger is missing methods 'log_debug'

221Friday, August 9, 13



package Employee;

has favorite_beatle => (
  is       => 'rw',
  required => 1,
);

222Friday, August 9, 13

One more kind of type is worth mentioning.  Let's say we're going to keep track of each 
employee's favorite Beatle.



package Employee;

has favorite_beatle => (
  is  => 'rw',
  isa => enum([ qw(John Paul George) ]),
  required => 1,
);

223Friday, August 9, 13

There are only a few possible values here, so we can just enumerate them!



package Blob;

sub send_to {
  my ($self, $target) = @_;

  confess "can't send to $target"
    unless $target->does('Transmitter');

  $target->send_string( $self->contents );
}

224Friday, August 9, 13

The last word on types, for now:  let's look at that send_to method again.  Here's what we 
ended up doing, and that's great.  But what if we wanted to require a duck type?  Or some 
other complicated type?

We've only been using types as the "isa" attribute on an attribute, but here we want to use a 
type in the body of a method.  This couldn't be easier.



package Blob;

sub send_to {
  my ($self, $target) = @_;

  my $type = duck_type([ 'send_string' ]);

  $type->assert_valid( $target );

  $target->send_string( $self->contents );
}

225Friday, August 9, 13

Types are just objects.  We get the type we want, then we assert that our input is a valid 
example of that type.  If it is, the program carries on.  If it isn't, we fail with the same kind of 
exception we saw before -- "lacks is missing methods send_string," in this case.

...could also just write this...



package Blob;

sub send_to {
  my ($self, $target) = @_;

  duck_type([ 'send_string' ])
    ->assert_valid( $target );

  $target->send_string( $self->contents );
}

226Friday, August 9, 13

or, if we're worried about the cost of building these types over and over...



package Blob;

sub send_to {
  my ($self, $target) = @_;

  state $type = duck_type([ 'send_string' ]);

  $type->assert_valid( $target );

  $target->send_string( $self->contents );
}

227Friday, August 9, 13



checkpoint: types

• types let you limit possible values for 
attributes

• we have a nice set of core "string" types

• MooseX::Types libraries give us more types

228Friday, August 9, 13



checkpoint: types

• role_type

• class_type

• duck_type

• enum

• we can use types outside of "has"

229Friday, August 9, 13



Moose::Object

230Friday, August 9, 13



package Employee;
use Moose;
has name  => (is => 'ro');
has title => (is => 'rw');

231Friday, August 9, 13

Moose::Object is what you ISA when you use Moose.  You get a constructor, and any object 
we make with Moose can be easily dumped.  Basically, $object->dump is just 
Dumper($object).



package Employee;
use Moose;
has name  => (is => 'ro');
has title => (is => 'rw');

my $employee = Employee->new({
  name  => 'J. Fred Bloggs',
  title => 'Hat Sharpener',
})

231Friday, August 9, 13

Moose::Object is what you ISA when you use Moose.  You get a constructor, and any object 
we make with Moose can be easily dumped.  Basically, $object->dump is just 
Dumper($object).



package Employee;
use Moose;
has name  => (is => 'ro');
has title => (is => 'rw');

my $employee = Employee->new({
  name  => 'J. Fred Bloggs',
  title => 'Hat Sharpener',
})

say $employee->dump;

231Friday, August 9, 13

Moose::Object is what you ISA when you use Moose.  You get a constructor, and any object 
we make with Moose can be easily dumped.  Basically, $object->dump is just 
Dumper($object).



package Employee;
use Moose;
has name  => (is => 'ro');
has title => (is => 'rw');

my $employee = Employee->new({
  name  => 'J. Fred Bloggs',
  title => 'Hat Sharpener',
})

$VAR1 = bless( {
                 'name' => 'J. Fred Bloggs',
                 'title' => 'Hat Sharpener'
               }, 'Employee' );

say $employee->dump;

231Friday, August 9, 13

Moose::Object is what you ISA when you use Moose.  You get a constructor, and any object 
we make with Moose can be easily dumped.  Basically, $object->dump is just 
Dumper($object).



$VAR1 = bless( {
                 'name' => 'J. Fred Bloggs',
                 'title' => 'Hat Sharpener'
               }, 'Employee' );

232Friday, August 9, 13

By the way, notice that we just got a hashref dump, here?  Moose::Objects are pretty much 
always hashes, although they don't need to be.  Do not be tempted by this knowledge, 
though.  If you ever screw around with the internals of the hashref, you are doing it wrong.

Anyway, dump is nice and handy, but it's definitely the least interesting feature offered by 
Moose::Object.



Error->new({
  message => "Permission denied.",
});

233Friday, August 9, 13

A much more interesting feature is BUILDARGS.  Let's say we have some class for error 
reports, and it's only got one required parameter, "message."  Having to give the name every 
time is a drag.

BUILDARGS lets us pre-process the arguments given to "new"



package Error;
use Moose;

override BUILDARGS => sub {
  my $class = shift;

  if (@_ == 1 and Str->check($_[0])) {
    return { message => $_[0] };
  }

  return super;
};

234Friday, August 9, 13

We can add this BUILDARGS to Error.  Let's read through it.  If, after the class (the invocant), 
there is exactly one argument, and it's a string, replace it with named args: (message => 
the_string).  Otherwise, just do the usual thing.



Error->new("Permission denied.");

Error->new({
  message => "Permission denied.",
});

235Friday, August 9, 13

So now we can write either of these.



BUILD and DEMOLISH

Class

Subclass

Subsub

236Friday, August 9, 13

These are the interesting things you get from Moose::Object.  BUILD and DEMOLISH.  They're 
run just after initialization (new) and upon object destruction.  The interesting thing is how 
they work.

Let's say we have this class hierarchy.  (describe order of build/demolish)



BUILD and DEMOLISH

Class

Subclass

Subsub

BUILD (1)

236Friday, August 9, 13

These are the interesting things you get from Moose::Object.  BUILD and DEMOLISH.  They're 
run just after initialization (new) and upon object destruction.  The interesting thing is how 
they work.

Let's say we have this class hierarchy.  (describe order of build/demolish)



BUILD and DEMOLISH

Class

Subclass

Subsub

BUILD (1)

236Friday, August 9, 13

These are the interesting things you get from Moose::Object.  BUILD and DEMOLISH.  They're 
run just after initialization (new) and upon object destruction.  The interesting thing is how 
they work.

Let's say we have this class hierarchy.  (describe order of build/demolish)



BUILD and DEMOLISH

Class

Subclass

Subsub

BUILD (1)

BUILD (2)

236Friday, August 9, 13

These are the interesting things you get from Moose::Object.  BUILD and DEMOLISH.  They're 
run just after initialization (new) and upon object destruction.  The interesting thing is how 
they work.

Let's say we have this class hierarchy.  (describe order of build/demolish)



BUILD and DEMOLISH

Class

Subclass

Subsub

BUILD (1)

BUILD (2)

BUILD (3)

236Friday, August 9, 13

These are the interesting things you get from Moose::Object.  BUILD and DEMOLISH.  They're 
run just after initialization (new) and upon object destruction.  The interesting thing is how 
they work.

Let's say we have this class hierarchy.  (describe order of build/demolish)



BUILD and DEMOLISH

Class

Subclass

Subsub

BUILD (1)

BUILD (2)

BUILD (3) DEMOLISH (1)

236Friday, August 9, 13

These are the interesting things you get from Moose::Object.  BUILD and DEMOLISH.  They're 
run just after initialization (new) and upon object destruction.  The interesting thing is how 
they work.

Let's say we have this class hierarchy.  (describe order of build/demolish)



BUILD and DEMOLISH

Class

Subclass

Subsub

BUILD (1)

BUILD (2)

BUILD (3) DEMOLISH (1)

236Friday, August 9, 13

These are the interesting things you get from Moose::Object.  BUILD and DEMOLISH.  They're 
run just after initialization (new) and upon object destruction.  The interesting thing is how 
they work.

Let's say we have this class hierarchy.  (describe order of build/demolish)



BUILD and DEMOLISH

Class

Subclass

Subsub

BUILD (1)

BUILD (2)

BUILD (3) DEMOLISH (1)

DEMOLISH (2)

236Friday, August 9, 13

These are the interesting things you get from Moose::Object.  BUILD and DEMOLISH.  They're 
run just after initialization (new) and upon object destruction.  The interesting thing is how 
they work.

Let's say we have this class hierarchy.  (describe order of build/demolish)



BUILD and DEMOLISH

Class

Subclass

Subsub

BUILD (1)

BUILD (2)

BUILD (3) DEMOLISH (1)

DEMOLISH (2)

DEMOLISH (3)

236Friday, August 9, 13

These are the interesting things you get from Moose::Object.  BUILD and DEMOLISH.  They're 
run just after initialization (new) and upon object destruction.  The interesting thing is how 
they work.

Let's say we have this class hierarchy.  (describe order of build/demolish)



BUILD and DEMOLISH

Class

Subclass

Subsub

BUILD (1)

BUILD (2)

BUILD (3) DEMOLISH (1)

DEMOLISH (2)

DEMOLISH (3)

237Friday, August 9, 13

DEMOLISH can be useful in limited circumstances.  It's good for graceful shutdown of 
resources, just like DESTROY in legacy objects.  The fact that it's called incrementally just 
makes DESTROY methods easier to write.  BUILD is much more interesting.  BUILD can be 
used to do complex validation of state.



package Employee;

has username => (
  ...
  lazy => 1,
  default => sub {
    my ($uname) = split /@/, $_[0]->email;
    return $uname;
  },
);

has email => (
  ...
  lazy => 1,
  default => sub {
    return $_[0]->username . q{@example.com};
  },
);

238Friday, August 9, 13

It's time to let our employees have accounts on the internets.  Since email and username can 
be inferred from one another, we should be able to define things in terms of each other.  We 
can compute username from email or email from username.  The problem is that if NEITHER 
is given, we'll have deep recursion.  We can't mark either one of these required, because we 
want to allow at most one of them to be blank.  So, we need a way to check the validity of the 
data. BUILD!



package Employee;

sub _sanity_check_username {
  my ($self) = @_;

  confess "one of username/email required"
    unless $self->has_username
    or     $self->has_email;

  confess "username/email mismatch"
    if  $self->has_username
    and $self->has_email
    and ...;
}

239Friday, August 9, 13

First, we just write a little routine that sanity checks the username/email combination.  If 
neither is given, we die.

If both are given and they don't match our rules, we die.



package Employee;

sub _sanity_check_username { ... }

sub BUILD {
  my ($self) = @_;

  $self->_sanity_check_username;
}

240Friday, August 9, 13

With that written, it's a simple matter to go ahead and tell BUILD to run that sanity check on 
every new object.  Even though it can't be expressed in a type, we can enforce this.

By putting it in its own method, rather than directly in BUILD, we can call it from other places, 
like triggers, after clearing attributes, and so on.



package Network::Client;

has config => (
  isa      => 'HashRef',
  required => 1,
  default  => sub {
    parse_ini_file("client.ini"),
  },
);

has hostname => (
  isa => HostName,
  default => sub {
    my ($self) = @_;
    return $self->config->{host};
  },
);

241Friday, August 9, 13

This can be a really confusing bug.  

This looks okay, right?  We get config from an ini file and then the hostname from the config.

…and it is okay, too.  Sometimes, but…



my $client = Network::Client->new;

# SOMETIMES...
# Can't use an undefined value as a
# HASH reference

242Friday, August 9, 13

What?  How can this happen?



package Network::Client;

has config => (
  isa      => 'HashRef',
  required => 1,
  default  => sub {
    parse_ini_file("client.ini"),
  },
);

has hostname => (
  isa => HostName,
  default => sub {
    my ($self) = @_;
    return $self->config->{host};
  },
);

243Friday, August 9, 13

This looks like it should just work, right?   I promise the config file is there and valid.  But if 
we scrutinize the stack trace, the (undef->{}) is coming from here



package Network::Client;

has config => (
  isa      => 'HashRef',
  required => 1,
  default  => sub {
    parse_ini_file("client.ini"),
  },
);

has hostname => (
  isa => HostName,
  default => sub {
    my ($self) = @_;
    return $self->config->{host};
  },
);

244Friday, August 9, 13

Well, the problem is that attribute initialization order is undefined.  It's basically hash-storage 
order.   "config" isn't guaranteed to be initialized before we try to get the hostname out of it 
so we have two scenarios...



undefined init order

245Friday, August 9, 13



undefined init order

1. config is initialized

245Friday, August 9, 13



undefined init order

1. config is initialized

2. hostname is initialized

245Friday, August 9, 13



undefined init order

1. config is initialized

2. hostname is initialized

3. everything is good

245Friday, August 9, 13



undefined init order

246Friday, August 9, 13

Type constraints will catch this, but it's still wrong.



undefined init order

1. hostname initialized is attempted first

246Friday, August 9, 13

Type constraints will catch this, but it's still wrong.



undefined init order

1. hostname initialized is attempted first

2. everything blows up

246Friday, August 9, 13

Type constraints will catch this, but it's still wrong.



undefined init order

1. hostname initialized is attempted first

2. everything blows up

3. despair

246Friday, August 9, 13

Type constraints will catch this, but it's still wrong.



package Network::Client;

has config => (
  isa      => 'HashRef',
  required => 1,
  default  => sub {
    parse_ini_file("client.ini"),
  },
);

has hostname => (
  isa  => HostName,
  lazy => 1,
  default => sub {
    my ($self) = @_;
    return $self->config->{host};
  },
);

247Friday, August 9, 13

We can mark hostname lazy, and then we know it won't be initialized until it's accessed, so 
we're probably safe.  But there are two problem cases to be wary of.



package Network::Client;

has config => ( ... );

has hostname => (
  isa  => HostName,
  lazy => 1,
  default => sub {
    my ($self) = @_;
    return $self->config->{host};
  },
);

has host_ip => (
  isa     => IPAddress,
  default => sub { ...; resolve($self->hostname) }
);

248Friday, August 9, 13

This is no good, again.  hostname is still lazy, so it won't be initialized until requested -- but 
now host_ip requests it, and it isn't lazy!  So now if host_ip is initialized before config, we get 
an even WEIRDER case.  You need to make anything that uses hostname in its default or 
builder ALSO lazy.



package Network::Client;

has config => ( ... );

has hostname => (
  isa  => HostName,
  ...
);

has host_ip => (
  isa     => IPAddress,
  ...
);

249Friday, August 9, 13

...that leads us to our next problem.  We're not adding this laziness to be efficient, we're 
adding it to make things sane.  The downside is that now if everything is lazy, we don't know 
about type violations until potentially really late in the game -- well after initialization.  We 
have an object that's just waiting to throw an exception, and we want to CRASH EARLY.



package Network::Client;

has config => ( ... );

has hostname => (..., isa  => HostName);
has host_ip  => (..., isa => IPAddress);

sub BUILD {
  my ($self) = @_;
  $self->hostname;
  $self->host_ip;
}

250Friday, August 9, 13

This is where BUILD comes in.



checkpoint: 
Moose::Object

• dump

• BUILDARGS

• DEMOLISH, self first, upward

251Friday, August 9, 13



checkpoint: BUILD

• BUILD, furthest ancestor first, downward

• useful for enforcing complex constraints

• useful for mitigating the need to use lazy

252Friday, August 9, 13



Defining Types

253Friday, August 9, 13

So, now we've talked about using the Moose core types and type libraries from the CPAN to 
validate your data.  We also looked at using BUILD to validate state.  Sometimes, though, this 
isn't enough, and in order to make your code easy to read and write, you need to define your 
own custom types.



defining types is weird

254Friday, August 9, 13

There are two ways to define types, and both are pretty weird.  There's stringy types -- which 
I won't be using at all -- and MooseX types.  Most of the time, you will be much better off 
writing MooseX types.  The rest of the time, you'd probably break even.
Like I said, though, the interface is weird.  This is just a warning.  Let's get down to it.



package Network::Socket;

has address => (
  is  => 'ro',
  isa => 'Str',
  required => 1,
);

has port => (
  is  => 'ro',
  isa => 'Int',
  required => 1,
);

255Friday, August 9, 13

So, our network socket needs to talk to an IP address.  Right now, we're just requiring a 
string, which obviously sucks a lot.  Even the port requirement isn't great.  -12 and 
6,000,000 aren't valid port numbers.  We're going to write a type library.  That's just a Perl 
module that will contain related types for us to re-use later.



package Network::Types;

use MooseX::Types -declare => [qw(
  IPAddress PortNumber
)];

1;

256Friday, August 9, 13

The first thing we do is make our new package;  I'm not omitting anything, here.  We don't 
need use strict, because MXT will turn that on for us.  We probably don't even need 
namespace::autoclean because Network::Types isn't a class.  It's just a library full of types 
that we can import.  The arguments to -declare are the names of types we plan to define in 
this library.



package Network::Types;
use MooseX::Types -declare => [...];

use MooseX::Types::Moose qw(Int Str);

257Friday, August 9, 13

Then we bring in Int and Str from MXT::Moose, because we're going to use those as base 
types.  



package Network::Types;
use MooseX::Types -declare =>
  [qw(IPAddress PortNumber)];

use MooseX::Types::Moose qw(Int Str);

subtype IPAddress, as Str, where {
  my @quads = split /\./;
  return unless 4 == @quads;
  for (@quads) {
    return if /[^0-9]/ or $_ > 255 or $_ < 0;
  }
  return 1;
};

258Friday, August 9, 13

...then comes the good part.  We say:  make a subtype using the "IPAddress" name that I 
declared earlier; it's a subtype of Str, so anything Str requires is required of IPAddress, too -- 
in other words, it can't be an ArrayRef, etc.  Then add this callback as an additional test.



package Network::Types;
use MooseX::Types -declare =>
  [qw(IPAddress PortNumber)];

use MooseX::Types::Moose qw(Int Str);

subtype IPAddress, as Str, where { ... };

subtype PortNumber, as Int, where {
  $_ > 0 and $_ < 2**16
};

259Friday, August 9, 13

PortNumber is even easier to define.

I think that as long as we're writing this network library, we might as well flesh it out a little...



package Network::Types;
use MooseX::Types -declare =>
  [qw(IPAddress PublicIPAddress PortNumber)];

use MooseX::Types::Moose qw(Int Str);

subtype IPAddress, as Str, where { ... };

subtype PortNumber, as Int, where { ... };

260Friday, August 9, 13

Let's add a PublicIPAddress type.



package Network::Types;
use MooseX::Types -declare =>
  [qw(IPAddress PublicIPAddress PortNumber)];

use MooseX::Types::Moose qw(Int Str);

subtype IPAddress, as Str, where { ... };

subtype PublicIPAddress, as IPAddress, where {
  return ! /\A127\./ and ! /\A10\./ ...;
};

subtype PortNumber, as Int, where { ... };

261Friday, August 9, 13

See?  We can subtype anything we want.



package Network::Socket;

has address => (
  is  => 'ro',
  isa => 'Str',
  required => 1,
);

has port => (
  is  => 'ro',
  isa => 'Int',
  required => 1,
);

262Friday, August 9, 13

Now we can go back to our Socket class...



package Network::Socket;
use Network::Types qw(IPAddress PortNumber);

has address => (
  is  => 'ro',
  isa => 'Str',
  required => 1,
);

has port => (
  is  => 'ro',
  isa => 'Int',
  required => 1,
);

263Friday, August 9, 13

import the types we want from our type library



package Network::Socket;
use Network::Types qw(IPAddress PortNumber);

has address => (
  is  => 'ro',
  isa => IPAddress,
  required => 1,
);

has port => (
  is  => 'ro',
  isa => PortNumber,
  required => 1,
);

264Friday, August 9, 13

...and use them.  So, this is great!  We have nice, useful domain-specific data validation.

Everything is sunshine and roses until some knucklehead tries to open this socket:



my $socket = Network::Socket->new({
  address => '127.0.0.1',
  port    => 'http',
});

265Friday, August 9, 13

The address is valid, but the port isn't.  We said a port has to be a number between 0 and 
65,535 -- but you know what, this is totally valid.  Perl has a built in way to turn http into 80, 
so let's use it!



package Network::Types;
use MooseX::Types -declare =>
  [qw(... PortNumber ServiceName)];

use MooseX::Types::Moose qw(Int Str);

subtype PortNumber, as Int, where { ... };

subtype ServiceName, as Str, where {
  my $port = getservbyname($_, 'tcp');
  return defined $port;
};

266Friday, August 9, 13

So, now we have a type that allows any service name for which we can find a port.  We could 
go forward and do this...



has port => (
  is  => 'ro',
  isa => PortNumber | ServiceName,
  required => 1,
);

267Friday, August 9, 13

...and this would work!  We can "or" together types to get type unions.  In general, though, we 
don't want to do this.  It's *much* more useful to be able to rely on the accessor always 
returning the same kind of data.  We want to know that ->port is always a number.  So, what 
do we do?  We're going to teach our type library how to turn a ServiceName into a 
PortNumber.  This is called a coersion.



package Network::Types;
use MooseX::Types -declare =>
  [qw(... PortNumber ServiceName)];

use MooseX::Types::Moose qw(Int Str);

subtype PortNumber, as Int, where { ... };

subtype ServiceName, as Str, where {
  my $port = getservbyname($_, 'tcp');
  return defined $port;
};

coerce PortNumber, from ServiceName, via {
  scalar getservbyname($_, 'tcp');
};

268Friday, August 9, 13

That's it!  We say, "If something needs a PortNumber, and you know that you have a 
ServiceName, you can get it by using this."  If the thing that comes out of the coercion isn't a 
valid PortNumber, Moose will still catch that and barf.  We just have to go back to the 
attribute definition...



has port => (
  is  => 'ro',
  isa => PortNumber | ServiceName,
  required => 1,
);

269Friday, August 9, 13

We can get rid of the "| ServiceName" now, because we're not allowing that as the type of the 
attribute value.



has port => (
  is  => 'ro',
  isa => PortNumber,
  required => 1,
);

270Friday, August 9, 13

but knowing how to coerce isn't enough.  We need to specifically mark the attribute as one 
that will perform coersions when needed.  This helps us coerce only input that we think 
should be coerced.



has port => (
  is  => 'ro',
  isa => PortNumber,
  coerce   => 1,
  required => 1,
);

271Friday, August 9, 13

Without that (coerce => 1), we will not allow a ServiceName!



use Network::Types qw(PortNumber);

say to_PortNumber('http');

272Friday, August 9, 13

Finally, just like we saw using types in method bodies, we can use coersions.  Importing the 
type from the type library will also give us a to_Whatever routine that tries to coerce the given 
value to the right type.



• use "MooseX::Types -declare" to write a 
type library

• subtype New, as Old, where { ... }

• coerce New, from Old, via { ... }

checkpoint:
defining types

273Friday, August 9, 13



Delegation

274Friday, August 9, 13



Delegation

275Friday, August 9, 13

Roles are really great, but I think delegation is where it's at, and it's underused.  What's great, 
though, is that roles and delegation really complement one another.



Delegation

• delegation is another alternative to 
inheritance

275Friday, August 9, 13

Roles are really great, but I think delegation is where it's at, and it's underused.  What's great, 
though, is that roles and delegation really complement one another.



Delegation

• delegation is another alternative to 
inheritance

• instead of including methods

275Friday, August 9, 13

Roles are really great, but I think delegation is where it's at, and it's underused.  What's great, 
though, is that roles and delegation really complement one another.



Delegation

• delegation is another alternative to 
inheritance

• instead of including methods

• pass them on to a delegate (or "proxy")

275Friday, August 9, 13

Roles are really great, but I think delegation is where it's at, and it's underused.  What's great, 
though, is that roles and delegation really complement one another.



has xmitter => (
  is   => 'ro',
  does => 'Transmitter',
  required => 1
);

sub log {
  my ($self, $level, $message) = @_;
  return unless $level >= $self->level;
  $self->xmitter->send_string( $message );
}

has level => ( ... );

276Friday, August 9, 13

Let's go back, once again, to our noisy network socket.  I think this was a pretty nice 
refactoring, but this is a little gross:



has xmitter => (
  is   => 'ro',
  does => 'Transmitter',
  required => 1
);

sub log {
  my ($self, $level, $message) = @_;
  return unless $level >= $self->level;
  $self->xmitter->send_string( $message );
}

has level => ( ... );

277Friday, August 9, 13

Every time we want to log some string, we're going to go through that method.  It's not bad, 
it's fine.  We can just eliminate the middle bit like this...



has xmitter => (
  is   => 'ro',
  does => 'Transmitter',
  required => 1,
  handles  => [ 'send_string' ],
);

sub log {
  my ($self, $level, $message) = @_;
  return unless $level >= $self->level;
  $self->send_string( $message );
}

has level => ( ... );

278Friday, August 9, 13

We say, "any call to the send_string method -- and please create that method for me, by the 
way -- will go to the transmitter object."

Now the noisy network socket has a send_string method, and it can call that directly.  I don't 
really like the name, though.  It's the right behavior, but it's not in the idiom of the role, 
which is a logger, not some kind of -- well -- transmitter.  So we do this...



has xmitter => (
  is   => 'ro',
  does => 'Transmitter',
  required => 1,
  handles  => {
    log_unconditionally =>'send_string'
  },
);

sub log {
  my ($self, $level, $message) = @_;
  return unless $level >= $self->level;
  $self->log_unconditionally( $message );
}

has level => ( ... );

279Friday, August 9, 13

Now we're saying, "If someone calls log_unconditionally -- and that gets created for us, again 
-- pass it along to the transmitter."

Now we're basically adding a new method to our role that will pass it along to whatever 
transmitter we use when creating objects that use this role.  Wuh?  It's simple.



has xmitter => (
  is   => 'ro',
  does => 'Transmitter',
  required => 1
);

sub log {
  my ($self, $level, $message) = @_;
  return unless $level >= $self->level;
  $self->xmitter->send_string( $message );
}

has level => ( ... );

280Friday, August 9, 13

If this made sense -- and it did, right?  Then all we're doing is this:



has xmitter => (
  is   => 'ro',
  does => 'Transmitter',
  required => 1
);

sub log_unconditionally {
  my ($self, $message) = @_;
  $self->xmitter->send_string($message);
}

sub log {
  my ($self, $level, $message) = @_;
  return unless $level >= $self->level;
  $self->log_unconditionally( $message );
}

has level => ( ... );

281Friday, August 9, 13

We're generating this helper method, but we're doing it in the attribute definition.  Boy, "has" 
sure can generate a lot of useful behaviors!



package Network::Socket;
use Moose;

with 'Transmitter';

sub send_string { ... }
sub send_lines  { ... }

package Transmitter;
use Moose::Role;

requires 'send_string';

282Friday, August 9, 13

You may remember that eventually, to make the Network::Socket a viable way to log stuff, we 
gave it this Transmitter role -- which did nothing other than show that we promise to 
implement the send_string method.  Let's take it a step further.



package Network::Socket;
use Moose;
with 'Transmitter::Complex';
sub send_string { ... }

283Friday, August 9, 13

we're going to replace our use of Transmitter with Transmitter::Complex;  it, too, will require 
send_string, but then it will add some instrumentation around send_string, letting us get a log of how 
many bytes we've sent or received. -- and note the "has [...]" semantics I'm using here for the first 
time.

Then with send_string guaranteed to exist already, we can implement the rest of our complex 
transmission interface in terms of it, like send_lines that we had before, and now a new stream_lines to 
read stuff read from an IO handle.



package Network::Socket;
use Moose;
with 'Transmitter::Complex';
sub send_string { ... }

package Transmitter::Complex;

283Friday, August 9, 13

we're going to replace our use of Transmitter with Transmitter::Complex;  it, too, will require 
send_string, but then it will add some instrumentation around send_string, letting us get a log of how 
many bytes we've sent or received. -- and note the "has [...]" semantics I'm using here for the first 
time.

Then with send_string guaranteed to exist already, we can implement the rest of our complex 
transmission interface in terms of it, like send_lines that we had before, and now a new stream_lines to 
read stuff read from an IO handle.



package Network::Socket;
use Moose;
with 'Transmitter::Complex';
sub send_string { ... }

package Transmitter::Complex;
use Moose::Role;

283Friday, August 9, 13

we're going to replace our use of Transmitter with Transmitter::Complex;  it, too, will require 
send_string, but then it will add some instrumentation around send_string, letting us get a log of how 
many bytes we've sent or received. -- and note the "has [...]" semantics I'm using here for the first 
time.

Then with send_string guaranteed to exist already, we can implement the rest of our complex 
transmission interface in terms of it, like send_lines that we had before, and now a new stream_lines to 
read stuff read from an IO handle.



package Network::Socket;
use Moose;
with 'Transmitter::Complex';
sub send_string { ... }

package Transmitter::Complex;
use Moose::Role;
with 'Transmitter'; # requires 'send_string'

283Friday, August 9, 13

we're going to replace our use of Transmitter with Transmitter::Complex;  it, too, will require 
send_string, but then it will add some instrumentation around send_string, letting us get a log of how 
many bytes we've sent or received. -- and note the "has [...]" semantics I'm using here for the first 
time.

Then with send_string guaranteed to exist already, we can implement the rest of our complex 
transmission interface in terms of it, like send_lines that we had before, and now a new stream_lines to 
read stuff read from an IO handle.



package Network::Socket;
use Moose;
with 'Transmitter::Complex';
sub send_string { ... }

package Transmitter::Complex;
use Moose::Role;
with 'Transmitter'; # requires 'send_string'

around send_string => sub { ... };

283Friday, August 9, 13

we're going to replace our use of Transmitter with Transmitter::Complex;  it, too, will require 
send_string, but then it will add some instrumentation around send_string, letting us get a log of how 
many bytes we've sent or received. -- and note the "has [...]" semantics I'm using here for the first 
time.

Then with send_string guaranteed to exist already, we can implement the rest of our complex 
transmission interface in terms of it, like send_lines that we had before, and now a new stream_lines to 
read stuff read from an IO handle.



package Network::Socket;
use Moose;
with 'Transmitter::Complex';
sub send_string { ... }

package Transmitter::Complex;
use Moose::Role;
with 'Transmitter'; # requires 'send_string'

around send_string => sub { ... };

has [ qw(bytes_sent bytes_rcvd) ] => (

283Friday, August 9, 13

we're going to replace our use of Transmitter with Transmitter::Complex;  it, too, will require 
send_string, but then it will add some instrumentation around send_string, letting us get a log of how 
many bytes we've sent or received. -- and note the "has [...]" semantics I'm using here for the first 
time.

Then with send_string guaranteed to exist already, we can implement the rest of our complex 
transmission interface in terms of it, like send_lines that we had before, and now a new stream_lines to 
read stuff read from an IO handle.



package Network::Socket;
use Moose;
with 'Transmitter::Complex';
sub send_string { ... }

package Transmitter::Complex;
use Moose::Role;
with 'Transmitter'; # requires 'send_string'

around send_string => sub { ... };

has [ qw(bytes_sent bytes_rcvd) ] => (
  is => 'rw', isa => 'Int',

283Friday, August 9, 13

we're going to replace our use of Transmitter with Transmitter::Complex;  it, too, will require 
send_string, but then it will add some instrumentation around send_string, letting us get a log of how 
many bytes we've sent or received. -- and note the "has [...]" semantics I'm using here for the first 
time.

Then with send_string guaranteed to exist already, we can implement the rest of our complex 
transmission interface in terms of it, like send_lines that we had before, and now a new stream_lines to 
read stuff read from an IO handle.



package Network::Socket;
use Moose;
with 'Transmitter::Complex';
sub send_string { ... }

package Transmitter::Complex;
use Moose::Role;
with 'Transmitter'; # requires 'send_string'

around send_string => sub { ... };

has [ qw(bytes_sent bytes_rcvd) ] => (
  is => 'rw', isa => 'Int',
);

283Friday, August 9, 13

we're going to replace our use of Transmitter with Transmitter::Complex;  it, too, will require 
send_string, but then it will add some instrumentation around send_string, letting us get a log of how 
many bytes we've sent or received. -- and note the "has [...]" semantics I'm using here for the first 
time.

Then with send_string guaranteed to exist already, we can implement the rest of our complex 
transmission interface in terms of it, like send_lines that we had before, and now a new stream_lines to 
read stuff read from an IO handle.



package Network::Socket;
use Moose;
with 'Transmitter::Complex';
sub send_string { ... }

package Transmitter::Complex;
use Moose::Role;
with 'Transmitter'; # requires 'send_string'

around send_string => sub { ... };

has [ qw(bytes_sent bytes_rcvd) ] => (
  is => 'rw', isa => 'Int',
);

sub send_lines { ... }

283Friday, August 9, 13

we're going to replace our use of Transmitter with Transmitter::Complex;  it, too, will require 
send_string, but then it will add some instrumentation around send_string, letting us get a log of how 
many bytes we've sent or received. -- and note the "has [...]" semantics I'm using here for the first 
time.

Then with send_string guaranteed to exist already, we can implement the rest of our complex 
transmission interface in terms of it, like send_lines that we had before, and now a new stream_lines to 
read stuff read from an IO handle.



package Network::Socket;
use Moose;
with 'Transmitter::Complex';
sub send_string { ... }

package Transmitter::Complex;
use Moose::Role;
with 'Transmitter'; # requires 'send_string'

around send_string => sub { ... };

has [ qw(bytes_sent bytes_rcvd) ] => (
  is => 'rw', isa => 'Int',
);

sub send_lines { ... }
sub stream_lines { my ($self, $fh) = @_; ... }

283Friday, August 9, 13

we're going to replace our use of Transmitter with Transmitter::Complex;  it, too, will require 
send_string, but then it will add some instrumentation around send_string, letting us get a log of how 
many bytes we've sent or received. -- and note the "has [...]" semantics I'm using here for the first 
time.

Then with send_string guaranteed to exist already, we can implement the rest of our complex 
transmission interface in terms of it, like send_lines that we had before, and now a new stream_lines to 
read stuff read from an IO handle.



package Transmitter::Complex;
use Moose::Role;
with 'Transmitter'; # requires 'send_string'

around send_string => sub { ... };

has [ qw(bytes_sent bytes_rcvd) ] => ( ... );

sub send_lines { ... }
sub stream_lines { my ($self, $fh) = @_; ... }

package Network::Client::HTTP;
has socket => (
  is   => 'ro',
  does => 'Transmitter::Complex',
  required => 1,
);

284Friday, August 9, 13

So, now we want to use this socket class in some library, and we want to be able to rely on all that 
stuff.  This is what we would have done up until now -- we know we have an object with all the 
behavior that Transmitter::Complex promises, so we can go call methods on socket.  This gets back to 
that ugly chain of methods we had earlier, though.  We don't want that, we want methods right on our 
client object.
EASY!



package Transmitter::Complex;
use Moose::Role;
with 'Transmitter'; # requires 'send_string'

around send_string => sub { ... };

has [ qw(bytes_sent bytes_rcvd) ] => ( ... );

sub send_lines { ... }
sub stream_lines { my ($self, $fh) = @_; ... }

package Network::Client::HTTP;
has socket => (
  is   => 'ro',
  does => 'Transmitter::Complex',
  required => 1,
  handles  => 'Transmitter::Complex',
);

285Friday, August 9, 13

That's it!

Moose does its best to let you put together units of functionality in the most straightfoward ways 
possible.  You could also write the above as...



package Transmitter::Complex;
use Moose::Role;
with 'Transmitter'; # requires 'send_string'

around send_string => sub { ... };

has [ qw(bytes_sent bytes_rcvd) ] => ( ... );

sub send_lines { ... }
sub stream_lines { my ($self, $fh) = @_; ... }

package Network::Client::HTTP;
has socket => (
  is   => 'ro',
  isa  => role_type('Transmitter::Complex'),
  required => 1,
  handles  => role_type('Transmitter::Complex'),
);

286Friday, August 9, 13

So, is Moose is doing its best to let us re-use and compose code in these ways, how do we integrate 
with something non-Moose?  Well, it's obvious, right?



my $log_type = duck_type([ qw(log log_debug) ]);

has logger => (
  is   => 'ro',
  isa  => $log_type,
  required => 1,
);

287Friday, August 9, 13

We had code like this earlier, using to let us demand and rely on a small set of methods to be 
provided by a non-Moose (or Moose!) class.  We want to also delegate these methods to 
remove the chained ->logger-> call, and that's easy.



my $log_type = duck_type([ qw(log log_debug) ]);

has logger => (
  is   => 'ro',
  isa  => $log_type,
  required => 1,
  handles  => $log_type,
);

288Friday, August 9, 13

In other words, if we use a duck type as the "handles" value, we delegate exactly all those 
methods that the duck type required in the first place.



289Friday, August 9, 13

Finally, I present, for sheer comedy value, the silliest kind of delegation you can perform.

You can delegate by regex -- RARELY a good idea -- and you can make that regex mean 
"everything."  Don't do this!  But notice the good thing reflected in this feature:  that despite 
trying to encourage consistent behavior among Perl programmers, Moose is still Perl:  it's 
giving you plenty of rope to hang yourself quickly and efficiently.



has logger => (

289Friday, August 9, 13

Finally, I present, for sheer comedy value, the silliest kind of delegation you can perform.

You can delegate by regex -- RARELY a good idea -- and you can make that regex mean 
"everything."  Don't do this!  But notice the good thing reflected in this feature:  that despite 
trying to encourage consistent behavior among Perl programmers, Moose is still Perl:  it's 
giving you plenty of rope to hang yourself quickly and efficiently.



has logger => (
  is   => 'ro',

289Friday, August 9, 13

Finally, I present, for sheer comedy value, the silliest kind of delegation you can perform.

You can delegate by regex -- RARELY a good idea -- and you can make that regex mean 
"everything."  Don't do this!  But notice the good thing reflected in this feature:  that despite 
trying to encourage consistent behavior among Perl programmers, Moose is still Perl:  it's 
giving you plenty of rope to hang yourself quickly and efficiently.



has logger => (
  is   => 'ro',
  isa  => 'Object',

289Friday, August 9, 13

Finally, I present, for sheer comedy value, the silliest kind of delegation you can perform.

You can delegate by regex -- RARELY a good idea -- and you can make that regex mean 
"everything."  Don't do this!  But notice the good thing reflected in this feature:  that despite 
trying to encourage consistent behavior among Perl programmers, Moose is still Perl:  it's 
giving you plenty of rope to hang yourself quickly and efficiently.



has logger => (
  is   => 'ro',
  isa  => 'Object',
  required => 1,

289Friday, August 9, 13

Finally, I present, for sheer comedy value, the silliest kind of delegation you can perform.

You can delegate by regex -- RARELY a good idea -- and you can make that regex mean 
"everything."  Don't do this!  But notice the good thing reflected in this feature:  that despite 
trying to encourage consistent behavior among Perl programmers, Moose is still Perl:  it's 
giving you plenty of rope to hang yourself quickly and efficiently.



has logger => (
  is   => 'ro',
  isa  => 'Object',
  required => 1,
  handles  => qr/.*/,

289Friday, August 9, 13

Finally, I present, for sheer comedy value, the silliest kind of delegation you can perform.

You can delegate by regex -- RARELY a good idea -- and you can make that regex mean 
"everything."  Don't do this!  But notice the good thing reflected in this feature:  that despite 
trying to encourage consistent behavior among Perl programmers, Moose is still Perl:  it's 
giving you plenty of rope to hang yourself quickly and efficiently.



has logger => (
  is   => 'ro',
  isa  => 'Object',
  required => 1,
  handles  => qr/.*/,
);

289Friday, August 9, 13

Finally, I present, for sheer comedy value, the silliest kind of delegation you can perform.

You can delegate by regex -- RARELY a good idea -- and you can make that regex mean 
"everything."  Don't do this!  But notice the good thing reflected in this feature:  that despite 
trying to encourage consistent behavior among Perl programmers, Moose is still Perl:  it's 
giving you plenty of rope to hang yourself quickly and efficiently.



checkpoint: delegation

290Friday, August 9, 13



checkpoint: delegation

• installs "local" methods that proxy for 
methods on an attribute

290Friday, August 9, 13



checkpoint: delegation

• installs "local" methods that proxy for 
methods on an attribute

• you can delegate by a list of names

290Friday, August 9, 13



checkpoint: delegation

• installs "local" methods that proxy for 
methods on an attribute

• you can delegate by a list of names

• or by the interface of a role

290Friday, August 9, 13



checkpoint: delegation

• installs "local" methods that proxy for 
methods on an attribute

• you can delegate by a list of names

• or by the interface of a role

• or a duck type

290Friday, August 9, 13



checkpoint: delegation

• installs "local" methods that proxy for 
methods on an attribute

• you can delegate by a list of names

• or by the interface of a role

• or a duck type

• or, so help you, a regular expression

290Friday, August 9, 13



warning: delegation

291Friday, August 9, 13



warning: delegation

• delegation is very useful

291Friday, August 9, 13



warning: delegation

• delegation is very useful

• but don't delegate too freely

291Friday, August 9, 13



warning: delegation

• delegation is very useful

• but don't delegate too freely

• every method you delegate makes your 
public API bigger

291Friday, August 9, 13



warning: delegation

• delegation is very useful

• but don't delegate too freely

• every method you delegate makes your 
public API bigger

• and makes future refactoring more difficult

291Friday, August 9, 13



Traits

292Friday, August 9, 13



Traits

• "trait" is the name for roles in the original 
research

• in Moose, a trait is a role we apply to an 
instance

293Friday, August 9, 13

So, what does that even mean, applying a role to an instance?



package Network::Socket::Noisy;
use Moose;
extends 'Network::Socket';

after [ 'send_string', 'send_lines' ] => sub {
  my ($self) = @_;

  say $self->describe_client_state;
};

294Friday, August 9, 13

This is more or less what we said we would write for our noisy network socket.  We extended 
the socket and modified methods.  Of course, now that isn't how we would write this any 
more, right?  We'd write this, instead...



package Network::Socket::Noisy;
use Moose::Role;

after [ 'send_string', 'send_lines' ] => sub {
  my ($self) = @_;

  say $self->describe_client_state;
};

295Friday, August 9, 13

This is more or less what we said we would write for our noisy network socket.  We extended 
the socket and modified methods.  Of course, now that isn't how we would write this any 
more, right?  We'd write this, instead...
...then we'd need a way to actually use that role, so we might write...



package Network::Socket::Noisy;
use Moose::Role;

after [ 'send_string', 'send_lines' ] => sub {
  my ($self) = @_;

  say $self->describe_client_state;
};

package Network::Socket::WithNoisy;
use Moose;
extends 'Network::Socket';
with 'Network::Socket::Noisy';

296Friday, August 9, 13

...but this is dumb.  We don't want to have to make a class for every possible combination of 
roles we might lump on top of a base class.  We want roles to *save* us effort, not make us 
do a lot of stupid nonsense work.
They do!



my $socket = Network::Socket->new({
  ...,
});

297Friday, August 9, 13

I just create an instance of the base class...



my $socket = Network::Socket->new({
  ...,
});

Moose::Util::apply_all_roles(
  $socket,
  'Network::Socket::Noisy',
  'Network::Socket::Lazy',
  'Network::Socket::Surly',
);

298Friday, August 9, 13

Then I apply all the roles to it.  This is great!  In general, adding traits to instances is just that 
easy.

Unfortunately, in this case, it isn't going to work.  Anybody know why?



use Network::Socket::Noisy;

has xmitter => (
  is       => 'ro',
  ...
  required => 1,
);

299Friday, August 9, 13

...it's because when we defined Network::Socket::Noisy, we had this attribute. It's required, so 
we absolutely must have a value for it, and it's readonly, so we can't add it after we've created 
the object.  Um... oops?  In this situation, Moose basically says, "Dude, you're adding traits to 
objects at runtime.  I'm just going to trust that you know what you're doing."  Moose will 
totally let you shoot yourself in the foot this way.  (Actually, this particular problem is solved 
these days, but it's demonstrative of a class of problems that are not entirely solved, nor can 
they be.)
---> But we have a solution.



package Network::Socket;
use Moose;

with 'Transmitter::Complex';

sub send_string { ... }

300Friday, August 9, 13

We go back to Network::Socket, and we say, "This is a class that we're definitely going to want 
to decorate with other roles a lot.  Let's make it easier."



package Network::Socket;
use Moose;

with 'MooseX::Traits',
     'Transmitter::Complex';

sub send_string { ... }

301Friday, August 9, 13

We go back to Network::Socket, and we say, "This is a class that we're definitely going to want 
to decorate with other roles a lot.  Let's make it easier."  We add MooseX::Traits, and it lets us 
do this...  we call "with_traits" to get a new class, automatically generated and with an 
automatically generated name, and then we call new on that.  This will properly validate the 
initialization, and we are guaranteed consistent object state again.  Yay!



package Network::Socket;
use Moose;

with 'MooseX::Traits',
     'Transmitter::Complex';

sub send_string { ... }

my $socket = Network::Socket->with_traits(
  'Network::Socket::Noisy',
  'Network::Socket::Lazy',
  'Network::Socket::Surly',
)->new({
  ...,
});

301Friday, August 9, 13

We go back to Network::Socket, and we say, "This is a class that we're definitely going to want 
to decorate with other roles a lot.  Let's make it easier."  We add MooseX::Traits, and it lets us 
do this...  we call "with_traits" to get a new class, automatically generated and with an 
automatically generated name, and then we call new on that.  This will properly validate the 
initialization, and we are guaranteed consistent object state again.  Yay!



checkpoint: traits

• a trait is just a role applied to an instance

• you can use Moose::Util::apply_all_roles

• or MooseX::Traits

302Friday, August 9, 13



M o o s e

303Friday, August 9, 13

Moose!  So, we've been using Moose to do all this stuff, now, but I haven't really explained 
how any of it works -- only what it does.



304Friday, August 9, 13

What is Moose?  I promised back at the beginning that this would not be a talk about magic, 
but about software.  So, how does this software work?

Well, I hate to do it, but I have to go just one level deeper and talk about...



Class::MOP

305Friday, August 9, 13

What is Class::MOP?  It's not, like, for mopping up all the awful crap lying around your code.  
It's a meta-object protocol.  If you don't know what they are, the famous text on them is 
this...



306Friday, August 9, 13

"The Art of the Metaobject Protocol"

No joke.  This is the actual cover of the book.  How awesome is that??

Here's a 10,000 foot up summary.



The Metaobject Protocol

307Friday, August 9, 13



The Metaobject Protocol

• we have an object system

307Friday, August 9, 13



The Metaobject Protocol

• we have an object system

• it has classes, instances, attributes

307Friday, August 9, 13



The Metaobject Protocol

• we have an object system

• it has classes, instances, attributes

• they interact in well-known ways

307Friday, August 9, 13



The Metaobject Protocol

• we have an object system

• it has classes, instances, attributes

• they interact in well-known ways

• we can model this with objects

307Friday, August 9, 13



308Friday, August 9, 13



Class

308Friday, August 9, 13



Class

AttributeAttributeAttributeMethod

308Friday, August 9, 13



Class

AttributeAttributeAttributeMethod
AttributeAttributeAttributeAttribute

308Friday, August 9, 13



Class

AttributeAttributeAttributeMethod
AttributeAttributeAttributeAttribute

AttributeAttributeAttributeRole

308Friday, August 9, 13



Class

AttributeAttributeAttributeMethod
AttributeAttributeAttributeAttribute

AttributeAttributeAttributeRole

308Friday, August 9, 13



Class

AttributeAttributeAttributeMethod
AttributeAttributeAttributeAttribute

AttributeAttributeAttributeRole

308Friday, August 9, 13



Class

AttributeAttributeAttributeMethod
AttributeAttributeAttributeAttribute

AttributeAttributeAttributeRole
Instance

308Friday, August 9, 13



Class

AttributeAttributeAttributeMethod
AttributeAttributeAttributeAttribute

AttributeAttributeAttributeRole
Instance

AttributeAttributeAttributeSlot

308Friday, August 9, 13



Class

AttributeAttributeAttributeMethod
AttributeAttributeAttributeAttribute

AttributeAttributeAttributeRole
Instance

AttributeAttributeAttributeSlot

308Friday, August 9, 13



Class

AttributeAttributeAttributeMethod
AttributeAttributeAttributeAttribute

AttributeAttributeAttributeRole
Instance

AttributeAttributeAttributeSlot TypeConstraint

308Friday, August 9, 13



Class

AttributeAttributeAttributeMethod
AttributeAttributeAttributeAttribute

AttributeAttributeAttributeRole
Instance

AttributeAttributeAttributeSlot TypeConstraint

309Friday, August 9, 13



OO for CS

310Friday, August 9, 13

the parties, the recruiters scouting your homework, the high-paying jobs right out of 
graduation...

but anyway, this is the sort of thing I imagine comp sci majors getting for homework...



OO for CS

• full disclosure:  I didn't major in comp sci

310Friday, August 9, 13

the parties, the recruiters scouting your homework, the high-paying jobs right out of 
graduation...

but anyway, this is the sort of thing I imagine comp sci majors getting for homework...



OO for CS

• full disclosure:  I didn't major in comp sci

• I heard how glamorous it was, and wanted to

310Friday, August 9, 13

the parties, the recruiters scouting your homework, the high-paying jobs right out of 
graduation...

but anyway, this is the sort of thing I imagine comp sci majors getting for homework...



OO for CS

• full disclosure:  I didn't major in comp sci

• I heard how glamorous it was, and wanted to

• but opted for the even more glamorous field 
of philosophy

310Friday, August 9, 13

the parties, the recruiters scouting your homework, the high-paying jobs right out of 
graduation...

but anyway, this is the sort of thing I imagine comp sci majors getting for homework...



OO for CS

311Friday, August 9, 13



OO for CS

• your homework:

311Friday, August 9, 13



OO for CS

• your homework:

• build an entirely new OO system

311Friday, August 9, 13



OO for CS

• your homework:

• build an entirely new OO system

• but follow the usual rules

311Friday, August 9, 13



OO for CS

• your homework:

• build an entirely new OO system

• but follow the usual rules

• (and we'll do it in Moose)

311Friday, August 9, 13



package Class;
use Moose;

has name => (
  is  => 'ro',
  isa => PackageName,
  required => 1,
);

312Friday, August 9, 13



package Class;
use Moose;

has name => (...);

has instance_methods => (
  is  => 'ro',
  isa => Map[ Identifier, CodeRef ],
  default => sub { return {} },
);

313Friday, August 9, 13



package Class;
use Moose;

has name => (...);

has instance_methods => (...);

has attributes => (
  is  => 'ro',
  isa => Map[
    Identifier, 
    role_type('Attribute')
  ],
);

314Friday, August 9, 13



package Class;
use Moose;

has name => (...);
has instance_methods => (...);
has attributes       => (...);

315Friday, August 9, 13

Now our class looks like a pretty decent start.  When we make instances, they'll have behavior 
(methods) and slots for state (attributes).  Now, how do we make an instance?  Easy, we write 
a method on Class.



has name => (...);
has instance_methods => (...);
has attributes       => (...);

sub new_object {
  my ($self, $arg) = @_;
  my $obj = Instance->new({ class => $self });

  for my $attr (value %{ $self->attributes }) {
    $obj->initialize_slot($attr, $arg);
  }

  return $obj;
}

316Friday, August 9, 13

So, now we have a way to make a new object.  What about subclassing?



has name => (...);
has instance_methods => (...);
has attributes       => (...);

has superclasses => (
  is => 'ro',
  isa => 'ArrayRef',
);

sub new_object { ... }

317Friday, August 9, 13

Well, first we need to keep track of whether a class has superclasses, so we add that 
attribute.



has name => (...);
has instance_methods => (...);
has attributes       => (...);

has superclasses => (
  is => 'ro',
  isa => 'ArrayRef',
);

sub new_object { ... }

sub new_subclass {
  my ($self) = @_;
  return Class->new({
    superclasses => [ $self ]
  });
}

318Friday, August 9, 13

...then we need a way to make a new class with this one as its superclass.  So, that's not so 
bad.   Let's go back to look at what happens when we make a new object in a class....



sub new_object {
  my ($self, $arg) = @_;
  my $obj = Instance->new({ class => $self });

  for my $attr (value %{ $self->attributes }) {
    $obj->initialize_slot( $attr, $arg );
  }

  return $obj;
}

319Friday, August 9, 13

We make a new instance -- the empty shell that will become the object -- and then we go 
through all our attributes and ask the Instance whether it wants to initialize that attribute.  
So, let's look at what Instance looks like.



package Instance;

has class => (
  is  => 'ro',
  isa => class_type('Class'),
  required => 1,
);

320Friday, August 9, 13

Obviously, we need to know what the class is, so that's easy enough.  But then we're going to 
need that initialize_slot method that gets called for each attribute.



package Instance;

has class => ( ... );

sub initialize_slot {
  my ($self, $attr, $arg) = @_;

  my $attr_name = $attr->name;
  my $attr_val  = $arg->{ $attr_name };
  $attr->type->assert_valid( $attr_val );

  $self->guts->{ $attr_name } = $attr_val;
}

321Friday, August 9, 13

Simple.  We check whether the attr accepts the value we got, and we stick it on the object, in 
its "guts."  What's that?



package Instance;

has class => ( ... );

sub initialize_slot { ... }

has guts => (
  is => 'ro',
  lazy_build => 1,
);

322Friday, August 9, 13

Well, it's an attribute, and we'll lazy-build it.



323Friday, August 9, 13

We make a hash.  Then we get the name of the class associated with the instance.  We do 
some extremely low-level magic, and voila!  Guts!

But what if we want some other kind of guts.  Like, we want an Instance that can't store 
invalid attributes.  Easy...



sub _build_guts {
  my ($self);

  my $storage    = { };
  my $class_name = $self->class->name;

  bless $storage => $class_name;

  return $storage;
}

323Friday, August 9, 13

We make a hash.  Then we get the name of the class associated with the instance.  We do 
some extremely low-level magic, and voila!  Guts!

But what if we want some other kind of guts.  Like, we want an Instance that can't store 
invalid attributes.  Easy...



package Instance::Strict;
use Moose;
extends 'Instance';

sub BUILD {
  my ($self) = @_;
  my $guts = $self->guts;

  lock_keys(%$guts, keys %$guts);
}

324Friday, August 9, 13

That's it!  We subclass "Instance" and make it lock down the keys to the set that exist 
immediately after initialization.



That's MOP!

325Friday, August 9, 13

Now, the example I just showed you is dramatically simplified from any real MOP, and 
obviously left out all kinds of stuff, but you get the idea, right?  A MOP models *and 
implements* your OO system in an OO system.  Generally, it is self-hosting, at least partly.



Class::MOP

326Friday, August 9, 13



Class::MOP

• a MOP for Perl 5

326Friday, August 9, 13



Class::MOP

• a MOP for Perl 5

• classes, instances

326Friday, August 9, 13



Class::MOP

• a MOP for Perl 5

• classes, instances

• attributes, methods

326Friday, August 9, 13



Class::MOP

• a MOP for Perl 5

• classes, instances

• attributes, methods

• method modifiers

326Friday, August 9, 13



Class::MOP

Class::MOP::Class

Class::MOP::Instance

Class::MOP::Attribute

Class::MOP::Method

327Friday, August 9, 13

These are the actual classes that define how the object system's parts work together.



328Friday, August 9, 13

So, now, we're ready to say what Moose is.



Moose->isa('Class::MOP')

329Friday, August 9, 13

Moose is just a set of subclasses of the Class::MOP classes, plus some more concepts that 
work the same way.



Moose
Moose::Meta::Class     isa Class::MOP::Class

Moose::Meta::Instance  isa Class::MOP::Instance

Moose::Meta::Attribute isa Class::MOP::Attribute

Moose::Meta::Method    isa Class::MOP::Method

Moose::Meta::Role      isa Class::MOP::Object
Moose::Meta::TypeConstraint isa that, too

330Friday, August 9, 13

These are the actual classes that define how the object system's parts work together.



package Network::Socket;
use Moose;
with 'Transmitter';
has port => (is => 'ro');

331Friday, August 9, 13

When you write the code on the top, the code on the bottom is run.  This, too, is a 
simplification, but a very minor one.  This is very, very close to what actually happens.  Moose 
and Class::MOP do all the work to translate this very high-level abstraction into the real, 
grotty, gross underlying Perl code.  Those things like "has" and "with" are just VERY VERY thin 
sugar over the underlying metaobject methods.

Read Moose.pm.  It is simple and instructive.



package Network::Socket;
use Moose;
with 'Transmitter';
has port => (is => 'ro');

$metaclass = Moose::Meta::Class->new(

331Friday, August 9, 13

When you write the code on the top, the code on the bottom is run.  This, too, is a 
simplification, but a very minor one.  This is very, very close to what actually happens.  Moose 
and Class::MOP do all the work to translate this very high-level abstraction into the real, 
grotty, gross underlying Perl code.  Those things like "has" and "with" are just VERY VERY thin 
sugar over the underlying metaobject methods.

Read Moose.pm.  It is simple and instructive.



package Network::Socket;
use Moose;
with 'Transmitter';
has port => (is => 'ro');

$metaclass = Moose::Meta::Class->new(
  name => 'Network::Socket',

331Friday, August 9, 13

When you write the code on the top, the code on the bottom is run.  This, too, is a 
simplification, but a very minor one.  This is very, very close to what actually happens.  Moose 
and Class::MOP do all the work to translate this very high-level abstraction into the real, 
grotty, gross underlying Perl code.  Those things like "has" and "with" are just VERY VERY thin 
sugar over the underlying metaobject methods.

Read Moose.pm.  It is simple and instructive.



package Network::Socket;
use Moose;
with 'Transmitter';
has port => (is => 'ro');

$metaclass = Moose::Meta::Class->new(
  name => 'Network::Socket',
);

331Friday, August 9, 13

When you write the code on the top, the code on the bottom is run.  This, too, is a 
simplification, but a very minor one.  This is very, very close to what actually happens.  Moose 
and Class::MOP do all the work to translate this very high-level abstraction into the real, 
grotty, gross underlying Perl code.  Those things like "has" and "with" are just VERY VERY thin 
sugar over the underlying metaobject methods.

Read Moose.pm.  It is simple and instructive.



package Network::Socket;
use Moose;
with 'Transmitter';
has port => (is => 'ro');

$metaclass = Moose::Meta::Class->new(
  name => 'Network::Socket',
);

my $metarole = find_meta('Transmitter');

331Friday, August 9, 13

When you write the code on the top, the code on the bottom is run.  This, too, is a 
simplification, but a very minor one.  This is very, very close to what actually happens.  Moose 
and Class::MOP do all the work to translate this very high-level abstraction into the real, 
grotty, gross underlying Perl code.  Those things like "has" and "with" are just VERY VERY thin 
sugar over the underlying metaobject methods.

Read Moose.pm.  It is simple and instructive.



package Network::Socket;
use Moose;
with 'Transmitter';
has port => (is => 'ro');

$metaclass = Moose::Meta::Class->new(
  name => 'Network::Socket',
);

my $metarole = find_meta('Transmitter');
$metarole->apply($metaclass);

331Friday, August 9, 13

When you write the code on the top, the code on the bottom is run.  This, too, is a 
simplification, but a very minor one.  This is very, very close to what actually happens.  Moose 
and Class::MOP do all the work to translate this very high-level abstraction into the real, 
grotty, gross underlying Perl code.  Those things like "has" and "with" are just VERY VERY thin 
sugar over the underlying metaobject methods.

Read Moose.pm.  It is simple and instructive.



package Network::Socket;
use Moose;
with 'Transmitter';
has port => (is => 'ro');

$metaclass = Moose::Meta::Class->new(
  name => 'Network::Socket',
);

my $metarole = find_meta('Transmitter');
$metarole->apply($metaclass);

$metaclass->add_attribute(port => ...);

331Friday, August 9, 13

When you write the code on the top, the code on the bottom is run.  This, too, is a 
simplification, but a very minor one.  This is very, very close to what actually happens.  Moose 
and Class::MOP do all the work to translate this very high-level abstraction into the real, 
grotty, gross underlying Perl code.  Those things like "has" and "with" are just VERY VERY thin 
sugar over the underlying metaobject methods.

Read Moose.pm.  It is simple and instructive.



checkpoint: MOP

332Friday, August 9, 13



checkpoint: MOP

• a MOP models an OO system with an OO 
system

332Friday, August 9, 13



checkpoint: MOP

• a MOP models an OO system with an OO 
system

• you can change how the OO system works 
by writing subclasses of metaclasses

332Friday, August 9, 13



checkpoint: MOP

• a MOP models an OO system with an OO 
system

• you can change how the OO system works 
by writing subclasses of metaclasses

• Moose is a powerful MOP for Perl 5

332Friday, August 9, 13



WHY!?

333Friday, August 9, 13

I spent a lot of time thinking that I could totally skip the idea of showing you the underlying 
MOP and explaining what it's there for.  You're not likely to interact with it directly, at least 
not until you've gotten pretty comfortable with using Moose's normal, core features.



WHY!?

334Friday, August 9, 13

...but I kept thinking about my promise that you would not leave here thinking that this is a 
lot of magic.  Truth be told, the MOP code is very, very complex, but it's hardly magic at all.  
It's a lot more like plumbing.  Lots of working with dangerous tools in tight places that smell 
really, really bad.  It wasn't necessarily fun to put together, but having all that plumbing 
available makes your life a lot more comfortable.



WHY!?

335Friday, August 9, 13

Anyway, now I want to get back to talking about really cool stuff you can do with Moose.  
Now that you know what the heck it's doing under the hood, it should be pretty easy to follow 
what's going on.



Native Traits

336Friday, August 9, 13



package CPAN::Distribution;

has prereqs => (
  is  => 'ro',
  isa => ArrayRef[ PackageName ],
  default  => sub { [] },
);

337Friday, August 9, 13



my $dist = CPAN::Dist->new({
  prereqs => [ 'Thing::Plugin:OAuth' ]
});

has prereqs => (
  is  => 'ro',
  isa => ArrayRef[ PackageName ],
  default  => sub { [] },
);

338Friday, August 9, 13

So, we said this would fail, being a bogus module name.



my $dist = CPAN::Dist->new({
  prereqs => [ 'Thing::Plugin::OAuth' ]
});

has prereqs => (
  is  => 'ro',
  isa => ArrayRef[ PackageName ],
  default  => sub { [] },
);

339Friday, August 9, 13

...but this is okay.



my $dist = CPAN::Dist->new({
  prereqs => [ 'Thing::Plugin::OAuth' ]
});

$dist->prereqs # ????

340Friday, August 9, 13

Here's the big problem, though.  What does this return? It returns a reference to an 
anonymous array with absolutely no overloading or tying.

That means that somebody can do this...



my $dist = CPAN::Dist->new({
  prereqs => [ 'Thing::Plugin::OAuth' ]
});

$dist->prereqs->[1] = "Some Junk";

has prereqs => (
  is  => 'ro',
  isa => ArrayRef[ PackageName ],
  default  => sub { [] },
);

341Friday, August 9, 13

and that will work!  AAAauuuuugh!

and remember: (is => 'ro') only means that you can't use the ->prereqs method to alter the 
value -- it doesn't mean that any reference is made recursively readonly!  We can still set, 
delete, splice, and otherwise totally corrupt the object state.



package CPAN::Distribution;

has prereqs => (
  is  => 'ro',
  isa => ArrayRef[ PackageName ],
  default  => sub { [] },
  traits   => [ 'Array' ],
);

342Friday, August 9, 13

Look!  Another thing we can tell "has"!  Well, we know what a trait is, right?  A trait is a role 
that applies to an instance (object) rather than a class.  The value of "prereqs" isn't an object, 
so we can't be applying a trait to it.

Instead, we're applying a trait to the underlying Attribute object, and that trait will change the 
way it behaves as an attribute.  In this case, Array is shorthand for 
Moose::Meta::Attribute::Native::Trait::Array and the way it alters the attribute object is...



package CPAN::Distribution;

has prereqs => (
  is  => 'ro',
  isa => ArrayRef[ PackageName ],
  default  => sub { [] },
  traits   => [ 'Array' ],
  handles  => {
    add_prereq => 'push',
  },
);

343Friday, August 9, 13

The change is that we can act like the underlying reference has methods, even though it's a 
native Perl type and not an object.  So, where we used to be doing this:



$dist->prereqs->[1] = "Some Junk";

my $dist = CPAN::Dist->new({
  prereqs => [ 'Thing::Plugin::OAuth' ]
});

344Friday, August 9, 13

(or this)  both of which are (a) ugly and (b) violate encapsulation and (c) break type 
constraints
we can now do this!  it's a real method that looks like part of your API (because it is) and lets 
you use modifiers, subclassing, and anything else.  Another piece of great news...



$dist->prereqs->[1] = "Some Junk";

my $dist = CPAN::Dist->new({
  prereqs => [ 'Thing::Plugin::OAuth' ]
});

push @{$dist->prereqs}, "Some Junk";

344Friday, August 9, 13

(or this)  both of which are (a) ugly and (b) violate encapsulation and (c) break type 
constraints
we can now do this!  it's a real method that looks like part of your API (because it is) and lets 
you use modifiers, subclassing, and anything else.  Another piece of great news...



$dist->prereqs->[1] = "Some Junk";

my $dist = CPAN::Dist->new({
  prereqs => [ 'Thing::Plugin::OAuth' ]
});

push @{$dist->prereqs}, "Some Junk";

$dist->add_prereq("Some Junk");

344Friday, August 9, 13

(or this)  both of which are (a) ugly and (b) violate encapsulation and (c) break type 
constraints
we can now do this!  it's a real method that looks like part of your API (because it is) and lets 
you use modifiers, subclassing, and anything else.  Another piece of great news...



$dist->prereqs->[1] = "Some Junk";

my $dist = CPAN::Dist->new({
  prereqs => [ 'Thing::Plugin::OAuth' ]
});

push @{$dist->prereqs}, "Some Junk";

$dist->add_prereq("Some Junk");

345Friday, August 9, 13

The first two succeed -- INCORRECTLY.
The third one will CORRECTLY throw an exception for the type violation.

We don't even want this to POSSIBLE, though.  We don't want anybody to have such easy 
access to the object's guts like that.  So, we just do this...



package CPAN::Distribution;

has prereqs => (
  is  => 'ro',
  isa => ArrayRef[ PackageName ],
  default  => sub { [] },
  traits   => [ 'Array' ],
  handles  => {
    add_prereq => 'push',
  },
);

346Friday, August 9, 13

we go back to the attribute definition.  that (is => 'ro') is what's giving us the "prereqs" 
method;  we don't really need it, because we can write "handles" entries to get all the 
behavior we want.  we just remove it.



package CPAN::Distribution;

has prereqs => (
  isa => ArrayRef[ PackageName ],
  default  => sub { [] },
  traits   => [ 'Array' ],
  handles  => {
    add_prereq => 'push',
  },
);

347Friday, August 9, 13

no more accessor!

what are the behaviors of our methods now?



$dist->prereqs->[1] = "Some Junk";

my $dist = CPAN::Dist->new({
  prereqs => [ 'Thing::Plugin::OAuth' ]
});

push @{$dist->prereqs}, "Some Junk";

$dist->add_prereq("Some Junk");

348Friday, August 9, 13

They all fail!  That's just what we want!

The first two fail because there is no such method as "prereqs" and the third because of type 
constraints.  And if we use VALID input...



$dist->prereqs->[1] = "Some::Junk";

my $dist = CPAN::Dist->new({
  prereqs => [ 'Thing::Plugin::OAuth' ]
});

push @{$dist->prereqs}, "Some::Junk";

$dist->add_prereq("Some::Junk");

349Friday, August 9, 13

...we still don't let people into our guts just because they're going to do okay things.  Only 
the valid method is allowed, and because the input is good, too, it works.



package CPAN::Distribution;

has prereqs => (
  isa => Map[ PackageName, LaxVersionStr ],
  default  => sub { {} },
  traits   => [ 'Hash' ],
  handles  => {
    add_prereq => 'set',
  },
);

$dist->set_prereq("Some::Junk" => 1.2);

350Friday, August 9, 13

Some of you might remember that earlier I had used this CPAN::Distribution example to show 
off the Map type, where we could type both the keys and the values.  We can still do that!  
Here, we will be constrained on both the keys and the values in our map.



Array

• push, pop

• shift, unshift

• map, grep, sort

• etc.

351Friday, August 9, 13



Hash

• get, set, delete

• exists, defined

• clear, is_empty

• etc.

352Friday, August 9, 13



String

• append, prepend

• substr

• length

• etc.

353Friday, August 9, 13



Bool

• set

• unset

• toggle

354Friday, August 9, 13



Code

• execute

• execute_method

355Friday, August 9, 13

The code native type is REALLY simple, but I think it's worth taking a little digression here to 
talk about how useful that "execute_method" behavior can be.



package Network::Service;
use Moose;

has xmitter => (
  is   => 'ro',
  does => 'Transmitter',
  lazy => 1,
  builder => '_build_xmitter',
  clearer => '_clear_xmitter',
);

356Friday, August 9, 13

We're going to write some service that needs a transmitter, and we want to built it lazily.



package Network::Service;
use Moose;

has xmitter => (
  is   => 'ro',
  does => 'Transmitter',
  lazy => 1,
  handles => 'Transmitter',
  builder => '_build_xmitter',
  clearer => '_clear_xmitter',
);

sub _build_xmitter { ... }

357Friday, August 9, 13

 The thing is, we don't want to write our own builder method.  We want to let users supply 
their own transmitter.



my $service = Network::Service->new({
  xmitter => $some_transmitter,
});

358Friday, August 9, 13

So, this is easy, no problem.  The issue is that we know that a lot of the transmitter types we 
might want to use are really expensive to build, or might time out, so we don't want to create 
them until we absolutely have to.  We don't really have a means to do that, so far.  But it's 
easy!



package Network::Service;
use Moose;

has xmitter => (
  is   => 'ro',
  does    => 'Transmitter',
  handles => 'Transmitter',
  lazy_build => 1,
);

sub _build_xmitter { ... }

359Friday, August 9, 13

We didn't want to write that transmitter builder, because we want to let the user supply it.  
Well, we can!



package Network::Service;
use Moose;

has xmitter => (
  is      => 'ro',
  does    => 'Transmitter',
  handles => 'Transmitter',
  lazy_build => 1,
);

has xmitter_builder => (
  isa      => 'CodeRef',
  required => 1,
  traits   => [ 'Code' ],
  handles  => {
    _build_xmitter => 'execute_method',
  },
);

360Friday, August 9, 13

Now we accept a callback from the user, and it becomes a method!  Specifically, it becomes a 
builder method for our lazy_build attribute.  The user can now write...



my $service = Network::Service->new({
  xmitter_builder => sub { 
    Expensive::Xmitter->new;
  },
});

361Friday, August 9, 13

...and we won't actually call that builder until someone tries to USE the transmitter.



checkpoint: native traits

362Friday, August 9, 13



checkpoint: native traits

• "traits" argument to "has" lets us apply 
traits to the attribute object

362Friday, August 9, 13



checkpoint: native traits

• "traits" argument to "has" lets us apply 
traits to the attribute object

• Moose comes with traits to let unblessed 
references delegate to virtual methods

362Friday, August 9, 13



checkpoint: native traits

• "traits" argument to "has" lets us apply 
traits to the attribute object

• Moose comes with traits to let unblessed 
references delegate to virtual methods

• by using these native traits, we help ensure 
type safety and cleaner interfaces

362Friday, August 9, 13



M o o s e X

363Friday, August 9, 13

So, now we've seen MooseX::Traits and MooseX::Types.  There are hundreds of modules 
under the MooseX namespace.  What is it?



Nobody knows.

364Friday, August 9, 13

Seriously.  It's like "pragma" in Perl 5.  What's a pragma?  There are sort of vague ideas, but 
no clear test.  MooseX is the same way.  MooseX modules are supposed to be about 
enhancing or extending the way that Moose works -- but just because something is written 
with Moose, or is a Moose role, it doesn't necessarily belong in MooseX.  A lot of MooseX 
libraries act like metaobject traits, though, which can be a big indicator that we're in talking 
about MooseX.



It doesn't matter, anyway.

365Friday, August 9, 13

This section is just going to be about stuff that happens to be in MooseX:: or is otherwise 
really useful for working with Moose.  I'll mention how some of them work, just to keep 
things interesting, but the point is that these are tools you can use, and they're examples of 
tools you can build if you need to.



Parameterized Roles

366Friday, August 9, 13

the traits paper talked about "requires" being for parameters;  what did that mean?



package Role::Logger;
use Moose::Role;

requires 'emit';

sub log {
  my ($self, $level, $message) = @_;
  return unless $level >= $self->level;
  $self->emit( $message );
}

has level => ( ... );

no Moose::Role;

367Friday, August 9, 13

Everybody remember the above?  Specifically how we required "emit" for our logger to work?

So -- and bear with me, here -- when we say the above, it is almost identical in meaning and 
effect to the following...



has emit_callback => (
  isa    => 'CodeRef',
  traits => [ 'Code' ],
  handles  => { emit => 'execute_method' },
  init_arg => undef,
  default  => sub { $_[0]->can('emit') },
); 

sub log {
  my ($self, $level, $message) = @_;
  return unless $level >= $self->level;
  $self->emit( $message );
}

368Friday, August 9, 13

Don't panic, let's walk through this.  We need to have an "emit callback" attribute, which must 
be a coderef.  Delegate our "emit" to its "execute_method" via native traits, so we appear to 
have a "emit" method that is provided by the callback provided on object initialization.  We 
don't let you supply one, and there's no accessor, so the default always wins.  It looks for an 
"emit" method, and it will find it on the class using this role.



has emit_callback => (
  isa    => 'CodeRef',
  traits => [ 'Code' ],
  handles  => { emit => 'execute_method' },
  init_arg => undef,
  default  => sub { $_[0]->can('emit') },
); 

sub log {
  my ($self, $level, $message) = @_;
  return unless $level >= $self->level;
  $self->emit( $message );
}

369Friday, August 9, 13

So this is close to equivalent to "requires 'emit'" but requiring emit is compile time safe 
because we check for the "emit" method at method composition time instead of when we 
make the first object.

This is a pretty complicated example!  Let's imagine a simpler one.



package Pipe::Streamer;
use Moose::Role;

requires 'pipe_name';

sub stream_to_pipe {
  my ($self, $message) = @_;

  open my $fh, '>', $self->pipe_name;
  $fh->print($message);
}

370Friday, August 9, 13

This looks really similar, right?  But there's a really big, important difference.  All we're 
getting from pipe_name is a simple constant.  Imagine this case...



package Pipe::Streamer;
use Moose::Role;

requires 'pipe_name';

sub stream_to_pipe {
  my ($self, $message) = @_;

  open my $fh, '>', $self->pipe_name;
  $fh->print($message);
}

package Server::Nethack;
with 'Pipe::Streamer';
sub pipe_name { '/var/run/nethack.log' }

370Friday, August 9, 13

This looks really similar, right?  But there's a really big, important difference.  All we're 
getting from pipe_name is a simple constant.  Imagine this case...



371Friday, August 9, 13

GROSS!

It's totally gross.  First of all, it's just ugly.  Secondly, now we've got all these public methods 
that don't really contribute to the role we're trying to PROVIDE only to the role we're trying to 
CONSUME!  What if instead, we could say...



package Network::Client;

371Friday, August 9, 13

GROSS!

It's totally gross.  First of all, it's just ugly.  Secondly, now we've got all these public methods 
that don't really contribute to the role we're trying to PROVIDE only to the role we're trying to 
CONSUME!  What if instead, we could say...



package Network::Client;
use Moose;

371Friday, August 9, 13

GROSS!

It's totally gross.  First of all, it's just ugly.  Secondly, now we've got all these public methods 
that don't really contribute to the role we're trying to PROVIDE only to the role we're trying to 
CONSUME!  What if instead, we could say...



package Network::Client;
use Moose;

with 'AutoSocket';

371Friday, August 9, 13

GROSS!

It's totally gross.  First of all, it's just ugly.  Secondly, now we've got all these public methods 
that don't really contribute to the role we're trying to PROVIDE only to the role we're trying to 
CONSUME!  What if instead, we could say...



package Network::Client;
use Moose;

with 'AutoSocket';

sub socket_port { 80 }

371Friday, August 9, 13

GROSS!

It's totally gross.  First of all, it's just ugly.  Secondly, now we've got all these public methods 
that don't really contribute to the role we're trying to PROVIDE only to the role we're trying to 
CONSUME!  What if instead, we could say...



package Network::Client;
use Moose;

with 'AutoSocket';

sub socket_port { 80 }
sub socket_dest { '127.0.0.1' }

371Friday, August 9, 13

GROSS!

It's totally gross.  First of all, it's just ugly.  Secondly, now we've got all these public methods 
that don't really contribute to the role we're trying to PROVIDE only to the role we're trying to 
CONSUME!  What if instead, we could say...



package Network::Client;
use Moose;

with 'AutoSocket';

sub socket_port { 80 }
sub socket_dest { '127.0.0.1' }
sub socket_src  { '127.0.0.2' }

371Friday, August 9, 13

GROSS!

It's totally gross.  First of all, it's just ugly.  Secondly, now we've got all these public methods 
that don't really contribute to the role we're trying to PROVIDE only to the role we're trying to 
CONSUME!  What if instead, we could say...



package Network::Client;
use Moose;

with 'AutoSocket';

sub socket_port { 80 }
sub socket_dest { '127.0.0.1' }
sub socket_src  { '127.0.0.2' }
sub socket_type { 'INET' }

371Friday, August 9, 13

GROSS!

It's totally gross.  First of all, it's just ugly.  Secondly, now we've got all these public methods 
that don't really contribute to the role we're trying to PROVIDE only to the role we're trying to 
CONSUME!  What if instead, we could say...



package Network::Client;
use Moose;

with 'AutoSocket';

sub socket_port { 80 }
sub socket_dest { '127.0.0.1' }
sub socket_src  { '127.0.0.2' }
sub socket_type { 'INET' }
sub socket_prot { 'TCP' }

371Friday, August 9, 13

GROSS!

It's totally gross.  First of all, it's just ugly.  Secondly, now we've got all these public methods 
that don't really contribute to the role we're trying to PROVIDE only to the role we're trying to 
CONSUME!  What if instead, we could say...



package Network::Client;
use Moose;

with 'AutoSocket';

sub socket_port { 80 }
sub socket_dest { '127.0.0.1' }
sub socket_src  { '127.0.0.2' }
sub socket_type { 'INET' }
sub socket_prot { 'TCP' }
sub socket_timeout { 60 }

371Friday, August 9, 13

GROSS!

It's totally gross.  First of all, it's just ugly.  Secondly, now we've got all these public methods 
that don't really contribute to the role we're trying to PROVIDE only to the role we're trying to 
CONSUME!  What if instead, we could say...



package Network::Client;
use Moose;

with 'AutoSocket' => {
  port => 80,
  dest => '127.0.0.1',
  src  => '127.0.0.2',
  type => 'INET',
  prot => 'TCP',
  timeout => 60,
};

372Friday, August 9, 13

Now we're telling the parameters DIRECTLY to the role, and we're doing it at composition 
time.  Win!  Now, can we do this?

Yes!  We're going to use MooseX::Role::Parameterized



package AutoSocket;
use MooseX::Role::Parameterized;

parameter [ qw(src dest) ] => (
  isa      => IPAddress,
  required => 1,
);

parameter type => (
  isa      => SocketType,
  required => 1,
);

373Friday, August 9, 13



package AutoSocket;
use MooseX::Role::Parameterized;

parameter [ qw(src dest) ] => (...);
parameter type => ( ... );

role {
  my $param = shift;

  has socket => (lazy_build => ...);

  method _build_socket => sub {
    my ($self) = @_;
    return Network::Socket->new({
      src  => $param->src,
      type => $param->type,
      ...,
    });
  };
};

374Friday, August 9, 13

So, take this in.  The "role" block describes how to build a role, *at composition time*, using 
the parameters given.  So this allows *exactly* the syntax I pined for earlier...



package Network::Client;
use Moose;

with 'AutoSocket' => {
  port => 80,
  dest => '127.0.0.1',
  src  => '127.0.0.2',
  type => 'INET',
  prot => 'TCP',
  timeout => 60,
};

375Friday, August 9, 13

we pass these parameters in to the parameterized role....



package AutoSocket;
use MooseX::Role::Parameterized;

parameter [ qw(src dest) ] => (...);
parameter type => ( ... );

role {
  my $param = shift;

  has socket => (lazy_build => ...);

  method _build_socket => sub {
    my ($self) = @_;
    return Network::Socket->new({
      src  => $param->src,
      type => $param->type,
      ...,
    });
  };
};

376Friday, August 9, 13

and imagine how this $param object is then being used

but there is EVEN MORE WIN! ...



package Network::Client;
use Moose;

with 'AutoSocket';

sub socket_port { 80 }
sub socket_dest { '127.0.0.1' }
sub socket_src  { '127.0.0.2' }
sub socket_type { 'INET' }
sub socket_prot { 'TCP' }
sub socket_timeout { 60 }

377Friday, August 9, 13

When we were using this awful style of non-parameterized role, what did the role code look 
like?



package AutoSocket;
use Moose::Role;

requires 'socket_port';
requires 'socket_dest';
requires 'socket_src';
requires 'socket_type';
requires 'socket_prot';
requires 'socket_timeout';

378Friday, August 9, 13

How does this ensure that the methods return the right kind of thing?  IT CANT!
Perl has no subroutine signatures, and even the stuff we saw to add them *doesn't type 
return values*.  We don't know if the type is valid until we try using it.  Possibly that's very 
very late!
Well, what did we do with MXRP?



package AutoSocket;
use MooseX::Role::Parameterized;

parameter [ qw(src dest) ] => (
  isa      => IPAddress,
  required => 1,
);

parameter type => (
  isa      => SocketType,
  required => 1,
  default  => 'TCP'
);

379Friday, August 9, 13

We defined the role's parameters like attributes!  With types!

When we try to compose with an invalid role parameter, WE WILL FAIL AT COMPILE TIME 
instead of maybe failing at runtime or maybe just having broken behavior!  Awesome.  We 
can even add defaults!



more validation

380Friday, August 9, 13



package Greeter;
use Moose;
use MooseX::Params::Validate;

sub greet {
  my ($self, %param) = validated_hash(
    \@_,
    name => { isa => 'Str' },
    age  => { isa => 'Int' },
  );
  
  $self->emit(
    "Hello $param{who}, I am $param{age} years old!"
  );
}

381Friday, August 9, 13

Perl traditionally has really lousy handling of method signatures and parameter handling.  
Moose, natively, does nothing about it.  There are a bunch of libraries that try to deal with the 
problem.  One of them is MooseX::Params::Validate, which gives us the traditional 
Params::Validate interface, using Moose types.



package Greeter;
use Moose;
use MooseX::Method::Signatures;

method greet (Str :$who, Int :$age where { $_ > 0 }) {
  $self->emit("Hello $who, I am $age years old!");
}

382Friday, August 9, 13

MooseX::Method::Signatures, obviously, goes a lot further.  It hooks into the Perl parsing 
process to allow new constructs like those seen here.  We get $self for free, inline type 
constraints, variables declared into our scope, and more... and no source filters.



use MooseX::Declare;

class Greeter extends Employee with Transmitter {

  method greet (Str :$who, Int :$age where {$_ > 0}) {
    $self->emit("Hello $who, I am $age years old!");
  }
}

383Friday, August 9, 13

MooseX::Declare takes that even further, providing a significantly altered syntax for class 
declaration as well.



package Rectangle;
use Moose;

has height => (is => 'ro');
has width  => (is => 'ro');

384Friday, August 9, 13

So, we have some really simple class with two attributes.  Later, we use it and we're thinking, 
"Hey, who would possibly create a Rectangle class without allowing us to say what color?"  So 
we use color, and you know what happens?  Nothing.  It isn't an error to pass extra 
arguments.  In fact, they get passed to BUILD, so in rare cases it can be useful to accept 
them.



package Rectangle;
use Moose;

has height => (is => 'ro');
has width  => (is => 'ro');

my $rect = Rectangle->new(
  height => 10,
  width  => 20,
  color  => 'red',
);

384Friday, August 9, 13

So, we have some really simple class with two attributes.  Later, we use it and we're thinking, 
"Hey, who would possibly create a Rectangle class without allowing us to say what color?"  So 
we use color, and you know what happens?  Nothing.  It isn't an error to pass extra 
arguments.  In fact, they get passed to BUILD, so in rare cases it can be useful to accept 
them.



package Rectangle;
use Moose;
use MooseX::StrictConstructor;

has height => (is => 'ro');
has width  => (is => 'ro');

my $rect = Rectangle->new(
  height => 10,
  width  => 20,
  color  => 'red',
);

385Friday, August 9, 13

Usually, though, it isn't, so using MooseX::StrictConstructor will make this an error!  this is a 
pretty darn useful module, and can prevent a lot of stupid bugs



naming conventions

386Friday, August 9, 13



package Hero;
use Moose;

has motto => (is => 'ro');

my $hero = Hero->new(motto => "Spoon!");

say $hero->motto;

$hero->motto("Not in the face!");

387Friday, August 9, 13

Normally, the simplest way to get an attribute is to just say whether it's read-only or read-
write and get an accessor.  It's pretty good default, because that's the Perl standard practice. 



Provide separate read and write accessors.

388Friday, August 9, 13

but apparently the *best* practice is this (if you want to take programming advice from a 
dog)



package Hero;
use Moose;
use MooseX::FollowPBP;

has motto => (is => 'ro');

my $hero = Hero->new(motto => "Spoon!");

say $hero->get_motto;

$hero->set_motto("Not in the face!");

389Friday, August 9, 13

That's it!

And if you have different feelings about how attributes should work by default, there are 
other options.  You can always write your own policy like this, or you might find luck with 
MooseX::SemiAffordanceAccessor...



package Hero;
use Moose;
use MooseX::SemiAffordanceAccessor;

has motto => (is => 'ro');

my $hero = Hero->new(motto => "Spoon!");

say $hero->motto;

$hero->set_motto("Not in the face!");

390Friday, August 9, 13

The getter is the attr name, but the setter is "set_attrname"



design (anti?)patterns

391Friday, August 9, 13

Here are some libraries that let you use some common design elements that... maybe you 
shouldn't.



package Global::DBH;
use MooseX::Singleton;

has connection => (
  is   => 'ro',
  isa  => 'DBI::db',
  lazy => 1,
  default => sub { DBI->connect(…) },
);

my $dbh = Global::DBH->connection;

392Friday, August 9, 13



package SysLogger;
use Moose;
use MooseX::ClassAttribute;

has facility => (
  is  => 'ro',
  isa => enum([ qw(mail daemon news) ]),
  builder => 'default_facility',
);

class_has default_facility => (
  is  => 'rw',
  isa => enum([ qw(mail daemon news) ]),
  default => 'daemon',
);

393Friday, August 9, 13



Singleton & ClassAttribute

394Friday, August 9, 13



Singleton & ClassAttribute

• can be good in very limited circumstances

394Friday, August 9, 13



Singleton & ClassAttribute

• can be good in very limited circumstances

• remember:

394Friday, August 9, 13



Singleton & ClassAttribute

• can be good in very limited circumstances

• remember:

• if you like class attributes...

394Friday, August 9, 13



Singleton & ClassAttribute

• can be good in very limited circumstances

• remember:

• if you like class attributes...

• you like singletons; if you like those...

394Friday, August 9, 13



Singleton & ClassAttribute

• can be good in very limited circumstances

• remember:

• if you like class attributes...

• you like singletons; if you like those...

• you like global variables

394Friday, August 9, 13



Useful Roles

395Friday, August 9, 13

People upload classes to the CPAN all the time.  Why not roles?  There aren't all that many 
roles on the CPAN yet, but we're see more and more of them over time.  Here are some of the 
roles I use the most often.



package Signal::Abort;
use Moose;

with 'Throwable';

has reason => (
  is  => 'ro',
  isa => 'Str',
  required => 1,
);

Signal::Abort->throw({ reason => 'Bored' });

396Friday, August 9, 13

Throwable is dead simple. It gives us a "throw" method that acts just like "new" and then 
throws the object as an exception (using Perl's "die" buit-in).  So, obviously, this is great for 
making simple exception classes.  If you're using this for error handling...



package Permission::Error;
use Moose;
extends 'Throwable::Error';

has who => (is => 'ro', ...);

397Friday, August 9, 13

This lets us write quick exception classes that have messages *and stack traces*, and we can 
easily add attributes to them, because it's Moose!

It's a lot like Exception::Class, but without using a half-baked bespoke attribute declaration 
system.



package Permission::Error;
use Moose;
extends 'Throwable::Error';

has who => (is => 'ro', ...);

Permission::Error->throw({
  message => "tried to leave Village",
  who     => "McGoohan"
});

397Friday, August 9, 13

This lets us write quick exception classes that have messages *and stack traces*, and we can 
easily add attributes to them, because it's Moose!

It's a lot like Exception::Class, but without using a half-baked bespoke attribute declaration 
system.



package Permission::Error;
use Moose;
extends 'Throwable::Error';

has who => (is => 'ro', ...);

Permission::Error->throw({
  message => "tried to leave Village",
  who     => "McGoohan"
});

Permission::Error->throw("no auth!");

397Friday, August 9, 13

This lets us write quick exception classes that have messages *and stack traces*, and we can 
easily add attributes to them, because it's Moose!

It's a lot like Exception::Class, but without using a half-baked bespoke attribute declaration 
system.



package File::Processor;
use Moose;
with 'MooseX::Getopt';

has verbose => (
  is  => 'rw',
  isa => 'Bool',
  required => 1,
  traits   => [ 'Getopt' ],
  cmd_aliases => 'v',
);
has input => (
  is  => 'rw',
  isa => 'Str',
);

398Friday, August 9, 13



package File::Processor;
use Moose;
with 'MooseX::Getopt';

has verbose => (
  is  => 'rw',
  isa => 'Bool',
  required => 1,
  traits   => [ 'Getopt' ],
  cmd_aliases => 'v',
);
has input => (
  is  => 'rw',
  isa => 'Str',
);

use File::Processor;
my $proc = File::Processor->new_with_options;
$proc->...;

398Friday, August 9, 13



package File::Processor;
use Moose;
with 'MooseX::Getopt';

has verbose => (
  is  => 'rw',
  isa => 'Bool',
  required => 1,
  traits   => [ 'Getopt' ],
  cmd_aliases => 'v',
);
has input => (
  is  => 'rw',
  isa => 'Str',
);

$ procfiles -v --input myfile.txt

399Friday, August 9, 13



integrating with other systems

400Friday, August 9, 13



package LWP::UserAgent::Safe;
use Moose;
use MooseX::NonMoose;
extends 'LWP::UserAgent';

before [ qw(get head post) ] => sub {
  my ($self, $url) = @_;

  Permission::Error->throw("NO!")
    if $url =~ m{//www.php.net/};
};

__PACKAGE__->meta->make_immutable;
401Friday, August 9, 13

NonMoose lets us use Moose to (often) safely extended non-Moose classes with Moose



package LWP::UserAgent::Safe;
use Moose;
use MooseX::NonMoose;
extends 'LWP::UserAgent';

before [ qw(get head post) ] => sub {
  my ($self, $url) = @_;

  Permission::Error->throw("NO!")
    if $url =~ m{//www.php.net/};
};

__PACKAGE__->meta->make_immutable;
402Friday, August 9, 13

You need this.  It makes lots of the NonMoose stuff work at all.



use Reflex::Interval;

my $t = Reflex::Interval->new(
	 interval    => 1,
	 auto_repeat => 1,
	 on_tick     => sub { say "timer ticked" },
);

$t->run_all;

403Friday, August 9, 13



404Friday, August 9, 13



Isn't Moose a little...
...slow?

404Friday, August 9, 13



Is Moose slow?

405Friday, August 9, 13



Is Moose slow?

• compile time can be a noticeable hit

• 0.25s or more

• runtime is pretty fast, but...

• be sure you compare apples to apples

405Friday, August 9, 13



"Moose is so slow!"

406Friday, August 9, 13

"Moose sucks!"



"Moose is so slow!"

• "I rewrote my library with Moose...

406Friday, August 9, 13

"Moose sucks!"



"Moose is so slow!"

• "I rewrote my library with Moose...

• I added type constraints and coersions...

406Friday, August 9, 13

"Moose sucks!"



"Moose is so slow!"

• "I rewrote my library with Moose...

• I added type constraints and coersions...

• I refactored to use a lot of delegates...

406Friday, August 9, 13

"Moose sucks!"



"Moose is so slow!"

• "I rewrote my library with Moose...

• I added type constraints and coersions...

• I refactored to use a lot of delegates...

• And attributes with native traits...

406Friday, August 9, 13

"Moose sucks!"



"Moose is so slow!"

• "I rewrote my library with Moose...

• I added type constraints and coersions...

• I refactored to use a lot of delegates...

• And attributes with native traits...

• ...and now everything is slow!"

406Friday, August 9, 13

"Moose sucks!"



The more you use, the 
more it costs.

407Friday, August 9, 13

The cost that you can't strip down as easily is the compile-time cost.  There are two solutions 
to this.  One is to start up less often: use more long-running services.  This is a good practice 
for lots of reasons, anyway.
Some people, though, turn to Moo.



Moose

408Friday, August 9, 13



"Minimalist Object Orientation"

409Friday, August 9, 13



(see also Mouse, "Moose 
Without the Antlers")

410Friday, August 9, 13



Moose Moo / Mouse

411Friday, August 9, 13



MOP

Moose Moo / Mouse

411Friday, August 9, 13



SUGAR

MOP

Moose Moo / Mouse

411Friday, August 9, 13



HYPE

SUGAR

MOP

Moose Moo / Mouse

411Friday, August 9, 13



HYPE

SUGAR

MOP

Moose Moo / Mouse

}Antlers

411Friday, August 9, 13



HYPE

SUGAR

MOP

Moose

EVERYTHING

Moo / Mouse

}Antlers

411Friday, August 9, 13



package CPAN::Dist;
use Mouse;

has prereqs => (
  is  => 'ro',
  isa => 'HashRef',
  traits     => [ 'Hash' ],
  lazy       => 1,
  default    => sub { ... },
  handles    => {
    set_prereq => 'set',
  },
);

412Friday, August 9, 13

...Mouse can do all this.

...and not a whole lot else.



package CPAN::Dist;
use Moo;

has prereqs => (
  is  => 'ro',
  isa =>
    sub { !blessed && ref eq 'HASH' },
  lazy    => 1,
  default => sub { ... }
);

413Friday, August 9, 13

...Moo can do all this.

...and not a whole lot else.



414Friday, August 9, 13



$moose_obj->meta; # Moose::Meta::Class

$mouse_obj->meta; # Mouse::Meta::Class

$moo___obj->meta; # Moo::HandleMoose::FakeMetaClass

414Friday, August 9, 13



00SE

U+00SE

COMBINING 
MOOSE ANTLERS
ABOVE

415Friday, August 9, 13



Any 
Questions?

416Friday, August 9, 13



Thank 
You!

417Friday, August 9, 13


